分析 根據(jù)函數(shù)f(x)的解析式,列出使解析式有意義的不等式組,求出解集即可.
解答 解:∵函數(shù)f(x)=$\sqrt{-cosx}$+$\sqrt{cotx}$,
∴$\left\{\begin{array}{l}{-cosx≥0}\\{cotx≥0}\end{array}\right.$,
即$\left\{\begin{array}{l}{cosx≤0}\\{cotx≥0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{\frac{π}{2}+2kπ≤x≤\frac{3π}{2}+2kπ,k∈Z}\\{kπ<x≤\frac{π}{2}+kπ,k∈Z}\end{array}\right.$,
即π+2kπ<x≤$\frac{3π}{2}$+2kπ,k∈Z;
∴函數(shù)f(x)的定義域是(π+2kπ,$\frac{3π}{2}$+2kπ],k∈Z.
故答案為:(π+2kπ,$\frac{3π}{2}$+2kπ],k∈Z.
點評 本題考查了根據(jù)函數(shù)解析式求定義域的應(yīng)用問題,是基礎(chǔ)題目.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 6 | C. | 4 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{2}{3}$ | B. | -$\frac{4}{3}$ | C. | $\frac{4}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,-1) | B. | (-2,-1) | C. | (2,1) | D. | (-2,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com