【題目】一臺機器使用時間較長,但還可以使用.它按不同的轉(zhuǎn)速生產(chǎn)出來的某機械零件有一些會有缺點,每小時生產(chǎn)有缺點零件的多少,隨機器運轉(zhuǎn)的速度而變化,如表為抽樣試驗結(jié)果:
轉(zhuǎn)速x(轉(zhuǎn)/秒) | 16 | 14 | 12 | 8 |
每小時生產(chǎn)有 缺點的零件數(shù)y(件) | 11 | 9 | 8 | 5 |
(1)用相關系數(shù)r對變量y與x進行相關性檢驗;
(2)如果y與x有線性相關關系,求線性回歸方程;
(3)若實際生產(chǎn)中,允許每小時的產(chǎn)品中有缺點的零件最多為10個,那么,機器的運轉(zhuǎn)速度應控制在什么范圍內(nèi)?(結(jié)果保留整數(shù))
參考數(shù)據(jù):,,.
參考公式:相關系數(shù)計算公式:,回歸方程中斜率和截距的最小二乘估計公式分別為:,.
【答案】(1)y與x有很強的線性相關關系;(2);(3)機器的轉(zhuǎn)速應控制在15轉(zhuǎn)/秒以下.
【解析】試題分析:(1)根據(jù)表中數(shù)據(jù)計算與相關系數(shù)的值,判斷與有很強的線性相關關系;(2)求出回歸方程的系數(shù)、,寫出線性回歸方程;(3)利用回歸方程求出的值即可.
試題解析:(1)根據(jù)表中數(shù)據(jù),計算,,,所以相關系數(shù);因為,所以與有很強的線性相關關系;
(2)回歸方程中,,, ∴所求線性回歸方程為.
(3)要使,即, 解得,所以機器的轉(zhuǎn)速應控制在轉(zhuǎn)/秒以下.
科目:高中數(shù)學 來源: 題型:
【題目】從向陽小區(qū)抽取100戶居民進行月用電量調(diào)查,為制定階梯電價提供數(shù)據(jù),發(fā)現(xiàn)其用電量都在50到350度之間,制作頻率分布直方圖的工作人員粗心大意,位置t處未標明數(shù)據(jù),你認為t=( )
A.0.0041
B.0.0042
C.0.0043
D.0.0044
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在上的函數(shù)為增函數(shù),對任意都有(為常數(shù))
(1)判斷為何值時,為奇函數(shù),并證明;
(2)設,是上的增函數(shù),且,若不等式對任意恒成立,求實數(shù)的取值范圍.
(3)若,,為的前項和,求正整數(shù),使得對任意均有.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關于y=3sin(2x﹣ )有以下命題:
①f(x1)=f(x2)=0,則x1﹣x2=kπ(k∈Z);
②函數(shù)的解析式可化為y=3cos(2x﹣ );
③圖象關于x=﹣ 對稱;④圖象關于點(﹣ ,0)對稱.
其中正確的是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在矩形ABCD中, ,點分別在邊上,且, 交于點.現(xiàn)將沿折起,使得平面平面,得到圖2.
(Ⅰ)在圖2中,求證: ;
(Ⅱ)若點是線段上的一動點,問點在什么位置時,二面角的余弦值為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(其中,為常數(shù)且)在處取得極值.
(Ⅰ)當時,求的單調(diào)區(qū)間;
(Ⅱ)若在上的最大值為1,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】用分層抽樣的方法從某校學生中抽取一個容量為60的樣本,其中高二年級抽取20人,高三年級抽取25人,已知該校高一年級共有800人,則該校學生總數(shù)為人.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com