5.若實(shí)數(shù)x,y,滿足2x-y-5=0,則$\sqrt{{x^2}+{y^2}}$的最小值是(  )
A.$\frac{{\sqrt{5}}}{5}$B.1C.$\sqrt{5}$D.5

分析 $\sqrt{{x^2}+{y^2}}$的幾何意義是原點(diǎn)到直線2x-y-5=0上的點(diǎn)的距離,運(yùn)用點(diǎn)到直線的距離公式計算即可得到所求值.

解答 解:$\sqrt{{x^2}+{y^2}}$的幾何意義是原點(diǎn)到直線2x-y-5=0上的點(diǎn)的距離,
由點(diǎn)到直線的距離公式可得最小值為d=$\frac{|0-0-5|}{\sqrt{4+1}}$=$\sqrt{5}$.
故選:C.

點(diǎn)評 本題考查函數(shù)的最值的求法,注意運(yùn)用幾何意義,以及點(diǎn)到直線的距離公式,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知拋物線C:y2=4x的焦點(diǎn)F,直線MN過焦點(diǎn)F且與拋物線C交于M,N兩點(diǎn),D為線段MF上一點(diǎn),且|MD|=2|NF|,若|DF|=1,則|MF|=2+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-3,4),$\overrightarrow{c}$=$\overrightarrow{a}$+λ$\overrightarrow$(λ∈R).
(1)若$\overrightarrow$⊥$\overrightarrow{c}$,求|$\overrightarrow{c}$|的值;
(2)λ何值時,$\overrightarrow{c}$與$\overrightarrow{a}$的夾角最。看藭r$\overrightarrow{c}$與$\overrightarrow{a}$的位置關(guān)系如何?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),P為線段AD(含端點(diǎn))上一個動點(diǎn),設(shè)$\overrightarrow{AP}=x\overrightarrow{AD},\overrightarrow{PB}•\overrightarrow{PC}=y$,對于函數(shù)y=f(x),給出以下三個結(jié)論:①當(dāng)a=2時,函數(shù)f(x)的值域?yàn)閇1,4];②對于任意的a>0,均有f(1)=1;③對于任意的a>0,函數(shù)f(x)的最大值均為4.其中所有正確的結(jié)論序號為②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知雙曲線$\frac{x^2}{a^2}-{y^2}=1(a>0)$的一條漸近線方程為y+2x=0,則a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)f(x)為定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=2x+m(m為常數(shù)),則f(-1)=( 。
A.3B.1C.-1D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦點(diǎn)分別為F1,F(xiàn)2,過F2的直線與雙曲線的右支交于兩點(diǎn)A,B,若|AF1|:|AB|=3:4,且F2是AB的一個四等分點(diǎn),則雙曲線C的離心率是( 。
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{10}}}{2}$C.$\frac{5}{2}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知在${({\root{3}{x}-\frac{1}{{2\root{3}{x}}}})^n}$的展開式中,第6項(xiàng)為常數(shù)項(xiàng).
(Ⅰ)求含x2的項(xiàng)的系數(shù);
(Ⅱ)求展開式中所有的有理項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知離心率為$\frac{\sqrt{5}}{2}$的雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2,M是雙曲線C的一條漸近線上的點(diǎn),且OM⊥MF2,O為坐標(biāo)原點(diǎn),若S${\;}_{△OM{F}_{2}}$=16,則雙曲線C的實(shí)軸長是( 。
A.32B.16C.8D.4

查看答案和解析>>

同步練習(xí)冊答案