若數(shù)列{an}是首項(xiàng)為19,公差為-2的等差數(shù)列
(1)求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn
(2)設(shè){bn-an}是以1為首項(xiàng),以3為公比的等比數(shù)列,求{bn}的通項(xiàng)公式及前n項(xiàng)和Tn
考點(diǎn):數(shù)列的求和,等差數(shù)列的性質(zhì)
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:(1)利用等差數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式即可得出;
(2)利用等比數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式即可得出.
解答: 解:(1)∵數(shù)列{an}是首項(xiàng)為19,公差為-2的等差數(shù)列,
∴an=19+(-2)(n-1)=-2n+21.
Sn=
n(19+21-2n)
2
=-n2+20n.
(2)∵{bn-an}是以1為首項(xiàng),以3為公比的等比數(shù)列,
∴bn-an=3n-1,∴bn=an+3n-1=-2n+21+3n-1,
∴Tn=Sn+
3n-1
3-1
=-n2+20n+
3n-1
2
點(diǎn)評(píng):本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式,考查了計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|ax-3=0},B={x|x2-2x-3=0},且A⊆B,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知增函數(shù)f(x)=
ax+b
1+x2
是定義在(-1,1)上的奇函數(shù),其中b∈R,a為正整數(shù),且滿足f(2)<
4
5

(1)求函數(shù)f(x)的解析式;
(2)求滿足f(t2-2t)+f(t)<0的t的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為從甲、乙兩名運(yùn)動(dòng)員中選拔一人參加2010年廣州亞運(yùn)會(huì)跳水項(xiàng)目,對(duì)甲、乙兩名運(yùn)動(dòng)員進(jìn)行培訓(xùn).現(xiàn)分別從他們?cè)谂嘤?xùn)期間參加的若干次預(yù)賽成績(jī)中隨機(jī)抽取6次,得出莖葉圖如圖所示.從平均成績(jī)及發(fā)揮穩(wěn)定性的角度考慮,你認(rèn)為選派哪名運(yùn)動(dòng)員合適?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,ABCD是直角梯形,AB⊥BC,AB∥CD,AB=2BC=2CD=2,點(diǎn)E為PA中點(diǎn).
(Ⅰ)求證:DE∥平面PBC;
(Ⅱ)求證:平面PBC⊥平面PAB;
(Ⅲ)若∠PDA=
π
4
,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=xm-
4
x
的圖象過(guò)點(diǎn)(2,0).
(1)求m的值;
(2)證明f(x)的奇偶性;
(3)判斷f(x)在(0,+∞)上的單調(diào)性,并給予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

今年5月,某商業(yè)集團(tuán)公司根據(jù)相關(guān)評(píng)分細(xì)則,對(duì)其所屬25家商業(yè)連鎖店進(jìn)行了考核評(píng)估,將各連鎖店的評(píng)估分?jǐn)?shù)按[60,70],[70,80],[80,90],[90,100]分成4組,其頻率分布直方圖如圖所示,集團(tuán)公司還依據(jù)評(píng)估得分,將這些連鎖店劃分為A、B、C、D四個(gè)等級(jí),等級(jí)評(píng)定標(biāo)準(zhǔn)如下表所示:
評(píng)估得分[60,70][70,80][80,90][90,100]
評(píng)定等級(jí)DCBA
(Ⅰ)估計(jì)該商業(yè)集團(tuán)各連鎖店評(píng)估得分的眾數(shù)和平均數(shù);
(Ⅱ)從評(píng)估分?jǐn)?shù)不少于80分的連鎖店中任選2家介紹營(yíng)銷(xiāo)經(jīng)驗(yàn),求至少選一家A等級(jí)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
lnx
1+x
-lnx,f(x)在x=x0處取最大值.以下各式正確的序號(hào)為
 

①f(x0)<x0  
②f(x0)=x0  
③f(x0)>x0  
④f(x0)<
1
9
  
⑤f(x0)>
1
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在(x-y)9的展開(kāi)式中,x7y2的系數(shù)與x2y7的系數(shù)之和等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案