【題目】如圖所示的幾何,底為菱形,,.平面底面,,.

1)證明:平面平面

2)求二面角的正弦值.

【答案】1)證明見解析;(2

【解析】

1)推導出,從而平面,進而.再由,得平面,推導出,從而平面,由此能證明平面平面;
2)取中點G,從而平面,以、所在直線分別為x軸、y軸、z軸的正方向建立如圖所示的空間直角坐標系,利用向量法能求出二面角的余弦值.

解:(1)由題意可知,

又因為平面底面,所以平面,

從而.

因為,所以平面,

易得,,

所以,故.

,所以平面.

平面,所以平面平面;

2)取中點G,相交于點O,連結,易證平面

、、兩兩垂直,O為坐標原點,以、、所在直線分別為x軸、y軸、z軸的正方向建立如圖所示的空間直角坐標系,

,,,

所以,.

由(1)可得平面的法向量為.

設平面的法向量為,

,得,

所以.

從而,

故二面角的正弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】以下命題中:

①若向量、、是空間的一組基底,則向量、也是空間的一組基底;

②已知、三點不共線,點為平面外任意一點,若點滿足,則點平面

③曲線與曲線)有相同的焦點.

④過定圓上一定點作圓的動弦,為坐標原點,若,則動點的軌跡為橢圓;

⑤若過點的直線交橢圓于不同的兩點,且的中點,則直線的方程是.

其中真命題的序號是______.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個大型噴水池的中央有一個強力噴水柱,為了測量噴水柱噴出的水柱的高度,某人在噴水柱正西方向的點A測得水柱頂端的仰角為45°,沿點A向北偏東30°前進100 m到達點B,在B點測得水柱頂端的仰角為30°,則水柱的高度是(  )

A. 50 mB. 100 m

C. 120 mD. 150 m

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點M在線段PPD//平面MACPA=PD=,AB=4.

(I)求證:MPB的中點;

(II)求二面角B-PD-A的大。

(III)求直線MC與平面BDP所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方形中,點E,F分別為邊的中點,將分別沿所在的直線進行翻折,在翻折的過程中,下列說法錯誤是(

A.存在某個位置,使得直線與直線所成的角為

B.存在某個位置,使得直線與直線所成的角為

C.A、C兩點都不可能重合

D.存在某個位置,使得直線垂直于直線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖(1)是某水上樂園擬開發(fā)水滑梯項目的效果圖,考慮到空間和安全方面的原因,初步設計方案如下:如圖(2),自直立于水面的空中平臺的上端點P處分別向水池內(nèi)的三個不同方向建水滑道,,,水滑道的下端點在同一條直線上,,平分,假設水滑梯的滑道可以看成線段,均在過C且與垂直的平面內(nèi),為了滑梯的安全性,設計要求.

(1)求滑梯的高的最大值;

(2)現(xiàn)在開發(fā)商考慮把該水滑梯項目設計成室內(nèi)游玩項目,且為保證該項目的趣味性,設計,求該滑梯裝置(即圖(2)中的幾何體)的體積最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了了解我市特色學校的發(fā)展狀況,某調(diào)查機構得到如下統(tǒng)計數(shù)據(jù):

年份

2014

2015

2016

2017

2018

特色學校(百個)

0.30

0.60

1.00

1.40

1.70

(Ⅰ)根據(jù)上表數(shù)據(jù),計算的相關系數(shù),并說明的線性相關性強弱(已知:,則認為線性相關性很強;,則認為線性相關性一般;,則認為線性相關性較弱);

(Ⅱ)求關于的線性回歸方程,并預測我市2019年特色學校的個數(shù)(精確到個).

參考公式: ,,,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線方程為y2=-4x,直線l的方程為2x+y-4=0,在拋物線上有一動點A,點A到y(tǒng)軸的距離為m,到直線l的距離為n,則m+n的最小值為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的單調(diào)減區(qū)間為.

1)求、的值及極值;

2)若對,不等式恒成立,求的取值范圍.

查看答案和解析>>

同步練習冊答案