A. | A=4 | B. | ω=1 | C. | φ=$\frac{π}{6}$ | D. | B=4 |
分析 由函數(shù)的最值求出A、B,由周期求出ω,由五點(diǎn)法作圖求出φ的值,可得函數(shù)的解析式.
解答 解:根據(jù)函數(shù)f(x)=Asin(ωx+φ)+B,(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象,
可得A=4-2=2,B=2,$\frac{1}{4}$•T=$\frac{1}{4}•\frac{2π}{ω}$=$\frac{5π}{12}$-$\frac{π}{6}$=$\frac{π}{4}$,∴ω=2.
再根據(jù)五點(diǎn)法作圖可得2•$\frac{π}{6}$+φ=$\frac{π}{2}$,∴φ=$\frac{π}{6}$,
故選:C.
點(diǎn)評(píng) 本題主要考查利由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的最值求出A、B,由周期求出ω,由五點(diǎn)法作圖求出φ的值,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向左平移$\frac{π}{8}$個(gè)單位 | B. | 向左平移$\frac{π}{4}$個(gè)單位 | ||
C. | 向右平移$\frac{π}{8}$個(gè)單位 | D. | 向右平移$\frac{π}{4}$個(gè)單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 7 | B. | 15 | C. | 16 | D. | 53 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {5} | B. | {2,4} | C. | {2,5} | D. | {2,4,5,6} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 奇函數(shù),在(-∞,0)上是減函數(shù) | B. | 奇函數(shù),在(-∞,0)上是增函數(shù) | ||
C. | 偶函數(shù),在(-∞,0)上是減函數(shù) | D. | 偶函數(shù),在(-∞,0)上是增函數(shù) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com