精英家教網 > 高中數學 > 題目詳情
設雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點分別為F1,F2,且|F1F2|=4,一條漸近線的傾斜角為60°.
(I)求雙曲線C的方程和離心率;
(Ⅱ)若點P在雙曲線C的右支上,且△PF1F2的周長為16,求點P的坐標.
分析:(I)由題意得,
2c=4
b
a
=tan60°
a2+b2=c2
,解出可得a,b,c,從而可得答案;
(Ⅱ)由(I)及已知可得|PF1|+|PF2|=12,PF1|-|PF2|=2,聯立解出|PF1|,設P(x0,y0),根據|PF1|及點P在雙曲線上可得方程組,解出即可;
解答:解:(Ⅰ)由題意得,
2c=4
b
a
=tan60°
a2+b2=c2
,解得
a=1
b=
3
c=2
,
所以雙曲線C的方程為x2-
y2
3
=1
,離心率為2;
(Ⅱ)由△PF1F2的周長為16,得|PF1|+|PF2|=12①,
又點P在右支上,所以|PF1|-|PF2|=2②,
聯立①②解得|PF1|=7,
設P(x0,y0),則
(x0+2)2+(y0)2
=7③,x02-
y02
3
=1
④,
聯立③④解得
x0=3
y0=±2
6
x0=-4
y0=±3
5
(舍),
點P坐標為(3,,2
6
)或(3,-2
6
點評:本題考查直線與雙曲線的位置關系、雙曲線的簡單性質,考查方程思想,考查學生的運算求解能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設雙曲線C:
x2
a2
-
y2
b2
=1
的右焦點為F2,過點F2的直線l與雙曲線C相交于A,B兩點,直線l的斜率為
35
,且
AF2
=2
F2B
;
(1)求雙曲線C的離心率;
(2)如果F1為雙曲線C的左焦點,且F1到l的距離為 
2
35
3
,求雙曲線C的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

(理)設雙曲線C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的離心率為e,若準線l與兩條漸近線相交于P、Q兩點,F為右焦點,△FPQ為等邊三角形.
(1)求雙曲線C的離心率e的值;
(2)若雙曲線C被直線y=ax+b截得的弦長為
b2e2
a
求雙曲線c的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

設雙曲線C:
x2
a2
-y2=1 (a>0) 與直線 l:x+y=1
相交于兩個不同的點A、B.
(1)求a的取值范圍:(2)設直線l與y軸的交點為P,且
PA
=
5
12
PB
.求a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•閔行區(qū)一模)設雙曲線C:
x2
a2
-
y2
b2
=1(a,b>0),R1,R2是它實軸的兩個端點,l是其虛軸的一個端點.已知其一條漸近線的一個方向向量是(1,
3
),△lR1R2的面積是
3
,O為坐標原點,直線y=kx+m(k,m∈R)與雙曲線C相交于A、B兩點,且
OA
OB

(1)求雙曲線C的方程;
(2)求點P(k,m)的軌跡方程,并指明是何種曲線.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•閔行區(qū)一模)設雙曲線C:
x2
a2
-
y2
b2
=1(a,b>0)
的虛軸長為2
3
,漸近線方程是y=±
3
x
,O為坐標原點,直線y=kx+m(k,m∈R)與雙曲線C相交于A、B兩點,且
OA
OB

(1)求雙曲C的方程;
(2)求點P(k,m)的軌跡方程.

查看答案和解析>>

同步練習冊答案