命題“x2-2x-3<0成立”是“x(x-3)<0”成立的( 。
A、充分不必要條件
B、必要不處分條件
C、充分必要條件
D、既不充分也不必要條件
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:由x2-2x-3<0解得-1<x<3.由x(x-3)<0,解得0<x<3.即可判斷出.
解答: 解:由x2-2x-3<0解得-1<x<3.
由x(x-3)<0,解得0<x<3.
∴命題“x2-2x-3<0成立”是“x(x-3)<0”成立必要不充分條件.
故選;B.
點(diǎn)評:本題考查了充要條件的判定、一元二次不等式的解法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

半徑為3的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,求此圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2+2(a-1)x+3在[4,+∞)上是增函數(shù),則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x>0,求函數(shù)y=2-x-
4
x
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)為奇函數(shù),且在(-∞,0)上為增函數(shù),g(x)為偶函數(shù) 且在(-∞,0)上為增函數(shù) 則在(0,+∞)上( 。
A、兩個都是增函數(shù)
B、兩個都是減函數(shù)
C、f(x)為增函數(shù)g(x)為減函數(shù)
D、f(x)為減函數(shù)g(x)為增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin
x
3
cos
x
3
+
3
cos2
x
3

(Ⅰ)將f(x)寫成Asin(ωx+φ)+b的形式,并求出該函數(shù)圖象的對稱中心;
(Ⅱ)在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足b2=ac,求f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)的圖象關(guān)于直線x=1對稱,當(dāng)x∈[0,1]時,f(x)=x,且對任意x∈R都有f(x+2)=f(x),g(x)=
f(x),x≥0
-log2013(-2x),x<0
,則方程g(x)-g(-x)=0的實(shí)數(shù)根個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且a,b,c成遞減的等差數(shù)列,若∠A=2∠C,則
a
c
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(2,0)及圓C:x2+y2-6x+4y+4=0,設(shè)過點(diǎn)P的直線與圓C交于A、B兩點(diǎn),當(dāng)|AB|=4,求以線段AB為直徑的圓.

查看答案和解析>>

同步練習(xí)冊答案