【題目】甲、乙兩位同學參加數(shù)學應用知識競賽培訓,現(xiàn)分別從他們在培訓期間參加的若干次測試成績中隨機抽取8次,記錄如下:

(Ⅰ)分別估計甲、乙兩名同學在培訓期間所有測試成績的平均分;

(Ⅱ)從上圖中甲、乙兩名同學高于85分的成績中各選一個成績作為參考,求甲、乙兩人成績都在90分以上的概率;

(Ⅲ)現(xiàn)要從甲、乙中選派一人參加正式比賽,根據(jù)所抽取的兩組數(shù)據(jù)分析,你認為選派哪位同學參加較為合適?說明理由.

【答案】(Ⅰ)(Ⅱ)(Ⅲ)見解析

【解析】

(Ⅰ)由莖葉圖中的數(shù)據(jù)計算,進而可得平均分的估計值;

(Ⅱ)求出基本事件數(shù),計算所求的概率值;

(Ⅲ)答案不唯一.從平均數(shù)與方差考慮,派甲參賽比較合適;從成績優(yōu)秀情況分析,派乙參賽比較合適.

(Ⅰ)由莖葉圖中的數(shù)據(jù),計算,

,

由樣本估計總體得,甲、乙兩名同學在培訓期間所有測試成績的平均分分別均約為分.

(Ⅱ)從甲、乙兩名同學高于分的成績中各選一個成績,基本事件是,

甲、乙兩名同學成績都在分以上的基本事件為

故所求的概率為.

(Ⅲ)答案不唯一.

派甲參賽比較合適,理由如下:

由(Ⅰ)知,,

,

因為,

所有甲的成績較穩(wěn)定,派甲參賽比較合適;

派乙參賽比較合適,理由如下:

從統(tǒng)計的角度看,甲獲得分以上(含分)的頻率為,

乙獲得分以上(含分)的頻率為

因為,所有派乙參賽比較合適.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若,討論函數(shù)的單調性;

(Ⅱ)若方程沒有實數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】空氣質量指數(shù)(簡稱:)是定量描述空氣質量狀況的無量綱指數(shù),空氣質量按照大小分為六級:為優(yōu),為良,為輕度污染,為中度污染,為重度污染,為嚴重污染.下面記錄了北京市天的空氣質量指數(shù),根據(jù)圖表,下列結論錯誤的是( )

A. 在北京這天的空氣質量中,按平均數(shù)來考察,最后天的空氣質量優(yōu)于最前面天的空氣質量 B. 在北京這天的空氣質量中,有天達到污染程度

C. 在北京這天的空氣質量中,12月29日空氣質量最好 D. 在北京這天的空氣質量中,達到空氣質量優(yōu)的天數(shù)有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)在點處的切線方程;

(2)若存在,對任意,使得恒成立,求實數(shù)的取值范圍;

(3)已知函數(shù)區(qū)間上的最小值為1,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)對一切實數(shù),都有成立,且.

1)求的值;

2)求的解析式;

3)已知,設:當時,不等式恒成立;:當時,是單調函數(shù).如果滿足成立的的集合記為,滿足成立的的集合記為,求為全集).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=,下列結論中錯誤的是

A. , f()=0

B. 函數(shù)y=f(x)的圖像是中心對稱圖形

C. f(x)的極小值點,則f(x)在區(qū)間(-∞,)單調遞減

D. fx)的極值點,則()=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中

時,恒成立,求a的取值范圍;

是定義在上的函數(shù),在內(nèi)任取個數(shù),,,,設,令,,如果存在一個常數(shù),使得恒成立,則稱函數(shù)在區(qū)間上的具有性質P.試判斷函數(shù)在區(qū)間上是否具有性質P?若具有性質P,請求出M的最小值;若不具有性質P,請說明理由.注:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】銷售某種活蝦,根據(jù)以往的銷售情況,按日需量x(公斤)屬于[0,100),[100,200),[200,300),[300,400),[400,500] 進行分組,得到如圖所示的頻率分布直方圖.

這種活蝦經(jīng)銷商進價成本為每公斤15元,當天進貨當天以每公斤20元進行銷售,當天未售出的須全部以每公斤10元賣給冷凍庫.某水產(chǎn)品經(jīng)銷商某天購進了300公斤這種活蝦,設當天利潤為Y元.

(1)求Y關于x的函數(shù)關系式;

(2)結合直方圖估計利潤Y不小于300元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知的最大值為A,若存在實數(shù)使得對任意實數(shù)總有成立,則的最小值為____________

查看答案和解析>>

同步練習冊答案