【題目】已知函數(shù).

(1)若在定義域上為單調(diào)遞減函數(shù),求實數(shù)的取值范圍;

(2)是否存在實數(shù),使得恒成立且有唯一零點,若存在,求出滿足 的值;若不存在,請說明理由.

【答案】(1);(2)

【解析】試題分析:(1)由在定義域上單調(diào)遞減,則恒成立,求的最大值小于等于0即可.

(2) 當(dāng)時, ,∴恒成立,當(dāng)時,由(1)知, 內(nèi)單調(diào)遞減,分, 兩種情況討論函數(shù)的單調(diào)性和零點.

試題解析:(1)由已知,函數(shù)的定義域為,

在定義域上單調(diào)遞減,則恒成立,

,所以,

當(dāng)時, , 單調(diào)遞增,當(dāng)時, , 單調(diào)遞減.即內(nèi)單調(diào)遞增, 內(nèi)單調(diào)遞減,

所以

(2)當(dāng)時, ,∴恒成立,

當(dāng)時,由(1)知, 內(nèi)單調(diào)遞減,

(i)若

由(1)知, 內(nèi)單調(diào)遞減,

, 無零點,不符合題意;

(ii)若,

設(shè) ,

所以,又,

所以存在,使得,即,①

且當(dāng)故當(dāng)時,有,當(dāng)時,有,

內(nèi)單調(diào)遞增, 內(nèi)單調(diào)遞減,

由于恒成立,且有唯一零點,∴.②

結(jié)合①,②知,③

聯(lián)立得

設(shè),則, ,

且當(dāng)時, ,所以上有唯一零點

即滿足方程組③的唯一,且

設(shè), ,所以上單調(diào)遞增,

,

即滿足方程組③的,所以.

綜上所述,存在,使得恒成立且有唯一零點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)由數(shù)字1、2、3、4、5、6、7組成無重復(fù)數(shù)字的七位數(shù)

求三個偶數(shù)必相鄰的七位數(shù)的個數(shù)及三個偶數(shù)互不相鄰的七位數(shù)的個數(shù)

(2)六本不同的書,分為三組,求在下列條件下各有多少種不同的分配方法?

(I)每組兩本

(II)一組一本,一組二本,一組三本.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓和點,動圓經(jīng)過點且與圓相切,圓心的軌跡為曲線

(1)求曲線的方程;

(2)點是曲線軸正半軸的交點,點在曲線上,若直線的斜率滿足面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為推行“新課堂”教學(xué)法,某化學(xué)老師分別用傳統(tǒng)教學(xué)和“新課堂”兩種不同的教學(xué)方式,在甲、乙兩個平行班進行教學(xué)實驗,為了解教學(xué)效果,期中考試后,分別從兩個班級中各隨機抽取名學(xué)生的成績進行統(tǒng)計,作出的莖葉圖如下圖,記成績不低于分者為“成績優(yōu)良”.

(1)分別計算甲、乙兩班個樣本中,化學(xué)分?jǐn)?shù)前十的平均分,并據(jù)此判斷哪種教學(xué)方式的教學(xué)效果更
佳;
(2)甲、乙兩班個樣本中,成績在分以下(不含分)的學(xué)生中任意選取人,求這人來自不同班級的概率;

(3)由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷能否在犯錯誤的概率不超過的前提下認(rèn)為“成績優(yōu)良與教學(xué)方式有關(guān)”?

甲班

乙班

總計

成績優(yōu)良

成績不優(yōu)良

總計

附:

獨立性檢驗臨界值表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在上的偶函數(shù),且當(dāng)時, .現(xiàn)已畫出函數(shù)軸左側(cè)的圖象,如圖所示,并根據(jù)圖象:

(1)直接寫出函數(shù), 的增區(qū)間;

(2)寫出函數(shù), 的解析式;

(3)若函數(shù), ,求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線ly=3x+3,求:

(1)點P(4,5)關(guān)于直線l的對稱點坐標(biāo);

(2)直線l1yx-2關(guān)于直線l的對稱直線的方程;

(3)直線l關(guān)于點A(3,2)的對稱直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求曲線在點處的切線方程;

(2)若函數(shù)上單調(diào)遞增,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某旅游城市為向游客介紹本地的氣溫情況,繪制了一年中各月平均最高氣溫和平均最低氣溫的雷達圖.圖中A點表示十月的平均最高氣溫約為15℃,B點表示四月的平均最低氣溫約為5℃下面敘述不正確的是 ( )

A. 各月的平均最低氣溫都在0℃以上

B. 七月的平均溫差比一月的平均溫差大

C. 三月和十一月的平均最高氣溫基本相同

D. 平均最高氣溫高于20℃的月份有5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)某班主任對全班50名學(xué)生學(xué)習(xí)積極性和參加社團活動情況進行調(diào)查,統(tǒng)計數(shù)據(jù)如表1所示

1


參加社團活動

不參加社團活動

合計

學(xué)習(xí)積極性高

17

8

25

學(xué)習(xí)積極性一般

5

20

25

合計

22

28

50

1)如果隨機從該班抽查一名學(xué)生,抽到參加社團活動的學(xué)生的概率是多少?抽到不參加社團活動且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?

2)運用獨立檢驗的思想方法分析:學(xué)生的學(xué)習(xí)積極性與參加社團活動情況是否有關(guān)系?并說明理由.


005

001

0001


3841

6635

10828

查看答案和解析>>

同步練習(xí)冊答案