分析 (1)由條件利用正弦函數(shù)的定義域和值域,求得函數(shù)y的值域;
(2)令sinx(-1≤t≤1)看成一個整體,然后利用二次函數(shù)的單調性求得函數(shù)的值域
解答 解 (1)∵-$\frac{π}{6}$<x<$\frac{π}{6}$,∴0<2x+$\frac{π}{3}$<$\frac{2π}{3}$,
∴0<sin(2x+$\frac{π}{3}$)≤1,∴y=2sin(2x+$\frac{π}{3}$)的值域為(0,2].
(2)y=2cos2x+5sin x-4=2(1-sin2x)+5sin x-4
=-2sin2x+5sin x-2=-2(sinx-$\frac{5}{4}$)2+$\frac{9}{8}$.
∴當sinx=1時,ymax=1,當sinx=-1時,ymin=-9,
∴y=2cos2x+5sin x-4的值域為[-9,1].
點評 本題主要考查三角函數(shù)的值域問題,屬于中等題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {2} | B. | {1,3} | C. | {2,5} | D. | {4,5} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$•f($\frac{π}{6}$)>2cos1•f(1) | B. | $\sqrt{3}$f($\frac{π}{6}$)<f($\frac{π}{3}$) | C. | $\sqrt{6}$f($\frac{π}{6}$)>2f($\frac{π}{4}$) | D. | $\sqrt{2}$f($\frac{π}{4}$)>f($\frac{π}{3}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $({-1,-\frac{1}{2}}]$ | B. | $[{-\frac{1}{2},0})$ | C. | [1,+∞) | D. | $[{-\frac{1}{2},+∞})$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com