A. | (1)(2) | B. | (3)(4) | C. | (1)(3) | D. | (2)(4) |
分析 根據新定義“保比等比數列”,結合等比數列中項的定義an•an+2=an+12,逐一判斷四個函數,即可得到結論.
解答 解:根據題意,由等比數列性質知an•an+2=an+12,
(1)、f(x)=x2,f(an)f(an+2)=an2an+22=(an+12)2=f2(an+1),故(1)是“保等比數列函數”;
(2)、f(x)=x2+1,f(an)f(an+2)≠f2(an+1),故(2)不是“保等比數列函數”;
(3)、f(x)=$\sqrt{|x|}$,f(an)f(an+2)=$\sqrt{|{a}_{n}||{a}_{n+2}|}$=($\sqrt{|{a}_{n+1}|}$)2=f2(an+1),故(3)是“保等比數列函數”
(4)、f(x)=ln|x|,則f(an)f(an+2)=ln(|an|)•ln(|an+2|)≠ln(|an+1|)2=f2(|an+1|),故(4)不是“保等比數列函數”;
故選:C.
點評 本題考查等比數列判定,涉及函數值的計算,理解“保等比數列函數”的定義是解題的關鍵.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $f(\frac{1}{2})<f(-\frac{3}{2})<f(3)$ | B. | $f(3)<f(-\frac{3}{2})<f(\frac{1}{2})$ | C. | $f(\frac{1}{2})<f(3)<f(-\frac{3}{2})$ | D. | $f(3)<f(\frac{1}{2})<f(-\frac{3}{2})$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com