19.在△ABC中,$A=\frac{π}{3},AC=4,BC=2\sqrt{3}$,則△ABC的面積為( 。
A.2B.$2\sqrt{3}$C.4D.$4\sqrt{3}$

分析 利用正弦定理求出B,判斷三角形的形狀,然后求解三角形的面積.

解答 解:在△ABC中,$A=\frac{π}{3},AC=4,BC=2\sqrt{3}$,
可得sinB=$\frac{ACsinA}{BC}$$\frac{4×\frac{\sqrt{3}}{2}}{2\sqrt{3}}$=1則B=$\frac{π}{2}$,
三角形為直角三角形,AB=2,
三角形的面積為:$\frac{1}{2}×2×2\sqrt{3}$=2$\sqrt{3}$.
故選:B.

點(diǎn)評 本題考查正弦定理的應(yīng)用,三角形的面積的求法,正確應(yīng)用正弦定理是解題的關(guān)鍵,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某小組有3名男生和2名女生,從中任選2名學(xué)生參加演講比賽,那么下列互斥但不對立的兩個事件是( 。
A.“至少1名男生”與“全是女生”
B.“至少1名男生”與“至少有1名是女生”
C.“至少1名男生”與“全是男生”
D.“恰好有1名男生”與“恰好2名女生”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)y=loga(x-3)+3(a>0且a≠1)恒過定點(diǎn)(4,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.4月15日我校組織高一年級同學(xué)聽了一次法制方面的專題報告.為了解同學(xué)們對法制知識的掌握情況,學(xué)生會對20名學(xué)生做了一項(xiàng)調(diào)查測試,這20名同學(xué)的測試成績(單位:分)的頻率分布直方圖如圖:
(1)求頻率分布直方圖中a的值,并估計本次測試的中位數(shù)和平均成績;
(2)分別求出成績落在[50,60)與[60,70)中的學(xué)生人數(shù);
(3)從成績在[50,70)的學(xué)生中任選2人,求此2人的成績都在[60,70)中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知等差數(shù)列{an},如果a4=7,a8=15.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=2n+an,求{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.A、B、C、D、E、F六人并排站成一排,如果A、B必須相鄰且B在A的左邊,那么不同的排法種數(shù)為( 。
A.720B.240C.120D.60

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某班50名學(xué)生一次調(diào)研考試的數(shù)學(xué)成績(滿分:100分)的頻率分布直方圖如圖所示.
(Ⅰ)根據(jù)頻率分布直方圖,完成以下頻數(shù)分布表:
成績[60,70)[70,80)[80,90)[90,100)
頻數(shù)    
(Ⅱ)用分層抽樣的方法從成績在[70,80)和[90,100)的學(xué)生中抽取4人,求成績在[70,80)和[90,100)中抽取的人數(shù);
(Ⅲ)估計這50名學(xué)生的數(shù)學(xué)成績的平均分及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列直線是函數(shù)$y=-2sin(\frac{1}{2}x-\frac{π}{6})$的對稱軸的是( 。
A.x=πB.$x=\frac{π}{2}$C.$x=\frac{π}{3}$D.$x=-\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合A={x|x2-x<0},B={x|x<a},若A∩B=A,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,1]B.(-∞,1)C.[1,+∞)D.(1,+∞)

查看答案和解析>>

同步練習(xí)冊答案