已知過拋物線
焦點
的直線
與拋物線相交于
兩點,若
,則
.
試題分析:由于拋物線
與對應標準方程的
.解(一):根據(jù)拋物線的性質
.即可得
.所以
.故填
.解(二):因為
所以
.依題意可得直線
的斜率
.由拋物線的性質
可得
所以
.故填
.拋物線的弦長公式最好要牢記.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的離心率為
,橢圓的的一個頂點和兩個焦點構成的三角形的面積為4,
(1)求橢圓C的方程;
(2)已知直線
與橢圓C交于A, B兩點,若點M(
, 0),求證
為定值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
:
的離心率為
且與雙曲線
:
有共同焦點.
(1)求橢圓
的方程;
(2)在橢圓
落在第一象限的圖像上任取一點作
的切線
,求
與坐標軸圍成的三角形的面積的最小值;
(3)設橢圓
的左、右頂點分別為
,過橢圓
上的一點
作
軸的垂線交
軸于點
,若
點滿足
,
,連結
交
于點
,求證:
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
(
)的右焦點為
,離心率為
.
(Ⅰ)若
,求橢圓的方程;
(Ⅱ)設直線
與橢圓相交于
,
兩點,
分別為線段
的中點. 若坐標原點
在以
為直徑的圓上,且
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
給定橢圓C:
,若橢圓C的一個焦點為F(
,0),其短軸上的一個端點到F的距離為
.
(I)求橢圓C的方程;
(II)已知斜率為k(k≠0)的直線l與橢圓C交于不同的兩點A,B,點Q滿足
且
=0,其中N為橢圓的下頂點,求直線在y軸上截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)已知橢圓
的離心率為
,
在橢圓C上,A,B為橢圓C的左、右頂點.
(1)求橢圓C的方程:
(2)若P是橢圓上異于A,B的動點,連結AP,PB并延長,分別與右準線
相交于M
1,M2.問是否存在x軸上定點D,使得以M
1M
2為直徑的圓恒過點D?若存在,求點D的坐標:若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知雙曲線方程2x2-y2=2.
(1)求以A(2,1)為中點的雙曲線的弦所在的直線方程;
(2)過點(1,1)能否作直線l,使l與雙曲線交于Q1,Q2兩點,且Q1,Q2兩點的中點為(1,1)?如果存在,求出它的方程;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,拋物線關于
軸對稱,它的頂點在坐標原點,點P(1,2),
,
均在拋物線上.
(1)求該拋物線方程;
(2)若AB的中點坐標為
,求直線AB方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知雙曲線
的左右焦點分別為
,
為雙曲線的中心,
是雙曲線右支上的點,
的內切圓的圓心為
,且圓
與
軸相切于點
,過
作直線
的垂線,垂足為
,若
為雙曲線的離心率,則( )
查看答案和解析>>