【題目】在直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以O為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ(ρ﹣2sinθ)=1.
(1)求C的直角坐標方程;
(2)設直線l與y軸相交于P,與曲線C相交于A、B兩點,且|PA|+|PB|=2,求點O到直線l的距離.
【答案】(1)x2+(y﹣1)2=2(2)
【解析】
(1)把曲線C的極坐標方程變形,結合ρ2=x2+y2,x=ρcosθ,y=ρsinθ可得C的直角坐標方程;
(2)直線l與y軸的交點為P(0,﹣1),曲線C是圓心為C(0,1),半徑為的圓,由CP=2可得P(0,﹣1)在圓外,將直線l的參數(shù)方程代入x2+(y﹣1)2=2,得到關于t的一元二次方程,利用根與系數(shù)的關系及參數(shù)t的幾何意義求解.
(1)∵曲線C的極坐標方程為ρ(ρ﹣2sinθ)=1,
化簡得:ρ2﹣2ρcosθ﹣1=0,
由ρ2=x2+y2,x=ρcosθ,y=ρsinθ,
得C的直角坐標方程為x2+y2﹣2y﹣1=0,即x2+(y﹣1)2=2;
(2)直線l與y軸的交點為P(0,﹣1),曲線C是圓心為C(0,1),半徑為的圓,
∵CP=2,∴P(0,﹣1)在圓外,
將直線l的參數(shù)方程代入x2+(y﹣1)2=2,
得t2﹣4tsinα+2=0.
∴t1+t2=4sinα,又P(0,﹣1)在圓外,
∴t1,t2同號,
∴|PA|+|PB|=|t1|+|t2|=|t1+t2|=|4sinα|=2,
得|sinα|,可得直線l的斜率為.
設點O到直線l的距離為h,則h=|OP|sin60°.
即點O到直線l的距離為.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)討論在上的零點個數(shù);
(2)當時,若存在,使,求實數(shù)的取值范圍.(為自然對數(shù)的底數(shù),其值為2.71828……)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某調(diào)查機構為了解人們對某個產(chǎn)品的使用情況是否與性別有關,在網(wǎng)上進行了問卷調(diào)查,在調(diào)查結果中隨機抽取了份進行統(tǒng)計,得到如下列聯(lián)表:
男性 | 女性 | 合計 | |
使用 | 15 | 5 | 20 |
不使用 | 10 | 20 | 30 |
合計 | 25 | 25 | 50 |
(1)請根據(jù)調(diào)查結果你有多大把握認為使用該產(chǎn)品與性別有關;
(2)在不使用該產(chǎn)品的人中,按性別用分層抽樣抽取人,再從這人中隨機抽取人參加某項活動,記被抽中參加該項活動的女性人數(shù)為,求的分布列和數(shù)學期望.
附:,
0.010 | 0.005 | 0.001 | |
6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和Sn=2an﹣1.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=anlog2an+1,求數(shù)列{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C的極坐標方程是,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,曲線C經(jīng)過伸縮變換得到曲線E,直線l:(t為參數(shù))與曲線E交于A,B兩點,
(1)設曲線C上任一點為,求的最小值;
(2)求出曲線E的直角坐標方程,并求出直線l被曲線E截得的弦AB長;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,菱形的邊長為,,與交于點.將菱形沿對角線折起,得到三棱錐,點是棱的中點,.
(I)求證:平面⊥平面;
(II)求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com