1.由某類事物的部分對象具有某些特征,推出該類事物的全部對象都具有這些特征的推理叫( 。
A.合情推理B.演繹推理C.類比推理D.歸納推理

分析 根據(jù)歸納推理的定義,可得結(jié)論.

解答 解:根據(jù)歸納推理的定義,可得由某類事物的部分對象具有某些特征,推出該類事物的全部對象都具有這些特征的推理叫歸納推理,
故選D.

點(diǎn)評 本題考查歸納推理的定義,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=ln(1+x)-ax,$g(x)=\frac{x}{1+x}-bln(1+x)$.
(Ⅰ)當(dāng)b=1時(shí),求g(x)的最大值;
(Ⅱ)若對?x∈[0,+∞),f(x)≤0恒成立,求a的取值范圍;
(Ⅲ)證明$\sum_{i=1}^n{\frac{i}{{{i^2}+1}}-lnn}≤\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知x,y的取值如表:
x0134
ya4.34.86.7
若x,y具有線性相關(guān)關(guān)系,且回歸方程為$\hat y=0.95x+2.6$,則a=2.2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)O為坐標(biāo)原點(diǎn),已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,拋物線C2:x2=-ay的準(zhǔn)線方程為y=$\frac{1}{2}$.
(1)求橢圓C1和拋物線C2的方程;
(2)設(shè)過定點(diǎn)M(0,2)的直線t與橢圓C1交于不同的兩點(diǎn)P,Q,若O在以PQ為直徑的圓的外部,求直線t的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知O是坐標(biāo)原點(diǎn),點(diǎn)A(1,0),若點(diǎn)M(x,y)為平面區(qū)域$\left\{\begin{array}{l}{x+y≥2}\\{x≤1}\\{y≤2}\end{array}\right.$上的一個(gè)動(dòng)點(diǎn),則|$\overrightarrow{OA}$+$\overrightarrow{OM}$|的取值范圍是( 。
A.[$\sqrt{5}$,2$\sqrt{2}$]B.[$\frac{1}{2}$,1]C.[$\frac{3\sqrt{2}}{2}$,2$\sqrt{2}$]D.[$\frac{\sqrt{2}}{2}$,$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖,已知六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=2AB,則下列結(jié)論正確的是④( 寫出所以正確結(jié)論的序號)
①PB⊥AD;
②平面PAB⊥平面PAE;
③BC∥平面PAE;
④直線PD與直線BC所成的角為45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的上頂點(diǎn)為A,直線y=kx與橢圓交于B,C兩點(diǎn),且kAB•kAC=-$\frac{3}{4}$,則此橢圓的離心率e=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)f(x)=$\frac{1}{\sqrt{1-(lo{g}_{2}(cosx))^{2}}}$的定義域?yàn)?(2kπ-\frac{π}{3},2kπ+\frac{π}{3})(k∈Z)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)命題p:函數(shù)$f(x)=lg({a{x^2}-x+\frac{1}{16}a})$的定義域?yàn)镽;命題q:函數(shù)$f(x)={({a-\frac{3}{2}})^x}$是R上的減函數(shù),如果命題p或q為真命題,命題p且q為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案