18.已知函數(shù)f(x)=ln(1+x)-ax,$g(x)=\frac{x}{1+x}-bln(1+x)$.
(Ⅰ)當(dāng)b=1時(shí),求g(x)的最大值;
(Ⅱ)若對?x∈[0,+∞),f(x)≤0恒成立,求a的取值范圍;
(Ⅲ)證明$\sum_{i=1}^n{\frac{i}{{{i^2}+1}}-lnn}≤\frac{1}{2}$.

分析 (Ⅰ)求出函數(shù)g(x)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)g(x)的最大值即可;
(Ⅱ)求出函數(shù)f(x)的導(dǎo)數(shù),通過討論a的范圍,得到函數(shù)f(x)的單調(diào)區(qū)間,從而確定a的具體范圍即可;
(Ⅲ)得到$\frac{x}{1+x}<ln(1+x)$(x>0),取$x=\frac{1}{n}•\frac{1}{1+n}<ln(1+\frac{1}{n})$,作差證出結(jié)論即可.

解答 解:(Ⅰ)當(dāng)b=1時(shí),$g(x)=\frac{x}{1+x}-ln(1+x)$,x∈(-1,+∞),
$g'(x)=\frac{1}{{{{(1+x)}^2}}}-\frac{1}{1+x}=\frac{-x}{{{{(1+x)}^2}}}$,
當(dāng)x∈(-1,0)時(shí),g'(x)>0,g(x)單調(diào)遞增;
當(dāng)x∈(0,+∞)時(shí),g'(x)<0,g(x)單調(diào)遞減;
∴函數(shù)g(x)的最大值g(0)=0.
(Ⅱ)$f'(x)=\frac{1}{1+x}-a$,∵x∈[0,+∞),∴$\frac{1}{1+x}∈(0,1]$.
①當(dāng)a≥1時(shí),f'(x)≤0恒成立,
∴f(x)在[0,+∞)上是減函數(shù),
∴f(x)≤f(0)=0適合題意.
②當(dāng)a≤0時(shí),$f'(x)=\frac{1}{1+x}-a>0$,
∴f(x)在[0,+∞)上是增函數(shù),
∴f(x)=ln(1+x)-ax>f(0)=0,
不能使f(x)<0在[0,+∞)恒成立.
③當(dāng)0<a<1時(shí),
令f'(x)=0,得$x=\frac{1}{a}-1$,
當(dāng)$x∈[0,\frac{1}{a}-1)$時(shí),f'(x)≥0,
∴f(x)在$[0,\frac{1}{a}-1)$上為增函數(shù),
∴f(x)>f(0)=0,不能使f(x)<0在[0,+∞)恒成立,
∴a的取值范圍是[1,+∞).
(Ⅲ)證明:由(Ⅰ)得$\frac{x}{1+x}-ln(x+1)≤0$,
∴$\frac{x}{1+x}<ln(1+x)$(x>0),
取$x=\frac{1}{n}•\frac{1}{1+n}<ln(1+\frac{1}{n})$,${x_n}=\sum_{i=1}^n{\frac{i}{{{i^2}+1}}}-lnn$,則${x_1}=\frac{1}{2}$,
∴${x_n}-{x_{n-1}}=\frac{n}{{{n^2}+1}}-[{lnn-ln(n-1)}]$
=$\frac{n}{{{n^2}+1}}-ln(1+\frac{1}{n-1})$$<\frac{n}{{{n^2}+1}}-\frac{1}{n}=-\frac{1}{{({n^2}+1)n}}<0$,
∴${x_n}<{x_{n-1}}<…<{x_1}=\frac{1}{2}$,
∴$\sum_{i=1}^n{\frac{i}{{{i^2}+1}}}-lnn≤\frac{1}{2}$.

點(diǎn)評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,考查不等式的證明,是一道綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.等比數(shù)列{an}的各項(xiàng)均為正數(shù),且a5a6+a2a9=18,則log3a1+log3a2+…+log3a10的值為(  )
A.12B.10C.8D.2+log35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知F1,F(xiàn)2分別是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),橢圓C上存在點(diǎn)P使∠F1PF2為鈍角,則橢圓C的離心率的取值范圍是( 。
A.($\frac{\sqrt{2}}{2}$,1)B.($\frac{1}{2}$,1)C.(0,$\frac{\sqrt{2}}{2}$)D.(0,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.秦九韶是我國南宋時(shí)期的數(shù)學(xué)家,他在所著的《數(shù)書九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法,如圖所示的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個(gè)實(shí)例,若輸入x的值為 2,則輸出v的值為( 。
A.211-1B.211-2C.210-1D.210-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=ax+xlnx的圖象在點(diǎn)x=e(e為自然對數(shù)的底數(shù))處的切線斜率為3.
(1)求實(shí)數(shù)a的值;
(2)當(dāng)x>1時(shí),求證f(x)>3(x-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知$f(x)=\left\{\begin{array}{l}a{x^2}+x,x>0\\-x,x≤0\end{array}\right.$,若不等式f(x-1)≥f(x)對一切x∈R恒成立,則實(shí)a數(shù)的最大值為( 。
A.$-\frac{9}{16}$B.-1C.$-\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.將函數(shù)$y=sin({x-\frac{π}{3}})$的圖象上每點(diǎn)的橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍(縱坐標(biāo)不變),得到函數(shù)y=f(x)的圖象.
(1)求函數(shù)f(x)的解析式及其圖象的對稱軸方程;
(2)在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c.若$f(A)=\frac{{\sqrt{3}}}{2},a=2,b=\frac{{2\sqrt{3}}}{3}$,求sinB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知命題甲是“{x|$\frac{{x}^{2}+x}{x-1}$≥0}”,命題乙是“{x|log3(2x+1)≤0}”,則甲是乙的必要不充分條件.(從充分不必要、必要不充分、充要、既不充分也不必要中選填)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.由某類事物的部分對象具有某些特征,推出該類事物的全部對象都具有這些特征的推理叫(  )
A.合情推理B.演繹推理C.類比推理D.歸納推理

查看答案和解析>>

同步練習(xí)冊答案