以下命題正確的個(gè)數(shù)為( 。
①命題“若x2>1,則x>1”的否命題為“若x2≤1,則x≤1”;
②命題“若α>β,則tanα>tanβ”的逆命題為真命題;
③命題“?x∈R,使得x2+x+1<0”的否定是“?x∈R;都有x2+x+1≥0”;
④“x>1”是“x2+x-2<0”的充分不必要條件.
A、1B、2C、3D、4
考點(diǎn):命題的真假判斷與應(yīng)用
專題:簡(jiǎn)易邏輯
分析:本題考查的知識(shí)點(diǎn)是判斷命題真假,比較綜合的考查了不等式,正切以及充要條件的一些性質(zhì),我們可以根據(jù)相應(yīng)的性質(zhì)對(duì)四個(gè)結(jié)論逐一進(jìn)行判斷,可以得到正確的結(jié)論.
解答: 解;命題的否命題分別否定命題的條件和結(jié)論,①正確;
命題“若α>β,則tanα>tanβ”的逆命題為“若tanα>tanβ,則α>β”為假命題,②錯(cuò)誤;
特稱命題“?x∈R,使得x2+x+1<0”的否定是“?x∈R,都有x2+x+1≥0”,③正確;
x2+x-2<0?(x+2)(x-1)<0?“-2<x<1”,“x>1”是“-2<x<1”的既不充分也不必要條件,④錯(cuò)誤.
故選:B
點(diǎn)評(píng):④“x>1”是“x2+x-2<0”的充分不必要條件,需要對(duì)“x2+x-2<0”化簡(jiǎn),同時(shí)分別就充分性和必要性做出判斷.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)計(jì)算:(log2125+log425+log85)(log52+log254+log1258)
(2)已知x
1
2
+x-
1
2
=3
,求x2+x-2和x-x-1的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖1,一個(gè)正四棱柱形(底面是正方形)的密閉容器底部鑲嵌了同底的正四棱錐形實(shí)心裝飾塊(內(nèi)部不滲水),容器內(nèi)盛有a升水時(shí),水面恰好經(jīng)過(guò)正四棱錐的頂點(diǎn)P.如果將容器倒置,水面也恰好過(guò)點(diǎn)P(圖2).有下列四個(gè)命題:
①正四棱錐的高等于正四棱柱高的一半;
②將容器側(cè)面水平放置時(shí),水面也恰好過(guò)點(diǎn)P;
③任意擺放該容器,當(dāng)水面靜止時(shí),水面都恰好經(jīng)過(guò)點(diǎn)P;
④若往容器內(nèi)再注入a升水,則容器恰好能裝滿.
其中真命題的代號(hào)是:( 。▽(xiě)出所有正確命題的代號(hào)).
A、②和③B、①和②
C、②和④D、③和④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=4x的準(zhǔn)線與x軸的交點(diǎn)為A,焦點(diǎn)為F,l是過(guò)點(diǎn)A且傾斜角為
π
3
的直線,則點(diǎn)F到直線l的距離等于( 。
A、1
B、
3
C、2
D、2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a、b、c分別為內(nèi)角A、B、C的對(duì)邊,若b=2asinB,求∠A的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=-an+2n(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式
(2)設(shè)bn=
an
an+1
+
an+1
an
-2,數(shù)列{bn}的前n項(xiàng)和為T(mén)n,求證:Tn
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P為圓C1:x2+y2=2上的動(dòng)點(diǎn),過(guò)P作x軸的垂線,垂足為Q,點(diǎn)M滿足:
2
MQ
=
PQ

(Ⅰ)求點(diǎn)M的軌跡C2的方程;
(Ⅱ)過(guò)直線x=2上的點(diǎn)T作圓C1的兩條切線,設(shè)切點(diǎn)分別為A,B,若直線AB與點(diǎn)M的軌跡C2交于C,D兩點(diǎn),若|
CD
|=λ|
AB
|,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下述函數(shù)中,在(-∞,0]內(nèi)為增函數(shù)的是( 。
A、y=x2-2
B、y=
3x+4
x+2
C、y=1+2x
D、y=-(x+2)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若A∈α,B∈α,A∈l,B∈l,P∈l,則(  )
A、P?αB、P∉α
C、l?αD、P∈α

查看答案和解析>>

同步練習(xí)冊(cè)答案