【題目】已知函數(shù)f(x)=x3-3xyf(x)上一點P(1,-2),過點P作直線l.

(1)求使直線lyf(x)相切且以P為切點的直線方程;

(2)求使直線lyf(x)相切且切點異于點P的直線方程yg(x).

【答案】(1)y=-2(2)y=-x

【解析】

(1)由已知可得斜率函數(shù)為,進而求出所過點切線的斜率,代入點斜式公式即可;(2)設另一切點為,求出該點切線方程,將點代入得到關于的方程,解出即可得結果.

(1)由,得,

過點且以為切點的直線的斜率,

∴所求直線方程為

(2)設切點坐標為,

則直線l的斜率k2f′(x0)=3-3,

∴直線l的方程為y-(-3x0)=(3-3)(xx0),

又直線l過點P(1,-2),

∴-2-(-3x0)=(3-3)(1-x0),

-3x0+2=(3-3)(x0-1),

解得x0=1(舍去)或x0=-

故所求直線斜率k=3-3=-

于是,即.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】“微信運動”是一個類似計步數(shù)據(jù)庫的公眾賬號.用戶只需以運動手環(huán)或手機協(xié)處理器的運動數(shù)據(jù)為介,然后關注該公眾號,就能看見自己與好友每日行走的步數(shù),并在同一排行榜上得以體現(xiàn).現(xiàn)隨機選取朋友圈中的50人,記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

步數(shù)/

10000以上

男生人數(shù)/

1

2

7

15

5

女性人數(shù)/

0

3

7

9

1

規(guī)定:人一天行走的步數(shù)超過8000步時被系統(tǒng)評定為“積極性”,否則為“懈怠性”.

(1)填寫下面列聯(lián)表(單位:人),并根據(jù)列表判斷是否有90%的把握認為“評定類型與性別有關”;

積極性

懈怠性

總計

總計

附:

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

(2)為了進一步了解“懈怠性”人群中每個人的生活習慣,從步行數(shù)在的人群中再隨機抽取3人,求選中的人中男性人數(shù)超過女性人數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,,直線的斜率為,直線的斜率為,且.

(1)求點的軌跡的方程;

(2),,連接并延長,與軌跡交于另一點,點中點,是坐標原點,的面積之和為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有一種候鳥每年都按一定的路線遷徙,飛往繁殖地產(chǎn)卵,科學家經(jīng)過測量發(fā)現(xiàn)候鳥的飛行速度可以表示為函數(shù),單位是,其中表示候鳥每分鐘耗氧量的單位數(shù),為表示測量過程中候鳥每分鐘的耗氧偏差.(參考數(shù)據(jù):,

1)若,候鳥停下休息時,它每分鐘的耗氧量為多少個單位?

2)若雄鳥的飛行速度為,雌鳥的飛行速度為,那么此時雄鳥每分鐘的耗氧量是雌鳥每分鐘耗氧量的多少倍?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若,求函數(shù)的單調遞增區(qū)間;

2)當時,若對任意的,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)求函數(shù)的單調遞增區(qū)間;

(Ⅱ)若對任意的實數(shù),都有成立,求實數(shù)的取值范圍;

(Ⅲ)若的最大值是,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班有50名學生,男女人數(shù)不相等。隨機詢問了該班5名男生和5名女生的某次數(shù)學測試成績,用莖葉圖記錄如下圖所示,則下列說法一定正確的是( )

A. 這5名男生成績的標準差大于這5名女生成績的標準差。

B. 這5名男生成績的中位數(shù)大于這5名女生成績的中位數(shù)。

C. 該班男生成績的平均數(shù)大于該班女生成績的平均數(shù)。

D. 這種抽樣方法是一種分層抽樣。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中心在原點,焦點在軸上,短軸長和焦距都等于2,是橢圓上的一點,且在第一象限內,過且斜率等于的直線與橢圓交于另一點,點關于原點的對稱點為.

(1)求橢圓的方程;

(2)證明:直線的斜率為定值;

(3)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[2018·江西聯(lián)考]交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統(tǒng)一為元,在下一年續(xù)保時,實行的是費率浮動機制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費率也就越高,具體浮動情況如表:

交強險浮動因素和浮動費率比率表

浮動因素

浮動比率

上一個年度未發(fā)生有責任道路交通事故

下浮10%

上兩個年度未發(fā)生有責任道路交通事故

下浮20%

上三個及以上年度未發(fā)生有責任道路交通事故

下浮30%

上一個年度發(fā)生一次有責任不涉及死亡的道路交通事故

0%

上一個年度發(fā)生兩次及兩次以上有責任道路交通事故

上浮10%

上一個年度發(fā)生有責任道路交通死亡事故

上浮30%

某機構為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了80輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:

類型

數(shù)量

20

10

10

20

15

5

以這80輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:

(1)按照我國《機動車交通事故責任強制保險條例》汽車交強險價格的規(guī)定,.某同學家里有一輛該品牌車且車齡剛滿三年,記X為該品牌車在第四年續(xù)保時的費用,求X的分布列與數(shù)學期望值;(數(shù)學期望值保留到個位數(shù)字)

(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車.假設購進一輛事故車虧損4000元,一輛非事故車盈利8000元:

①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;

②若該銷售商一次購進100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.

查看答案和解析>>

同步練習冊答案