精英家教網 > 高中數學 > 題目詳情

【題目】某商品促銷活動設計了一個摸獎游戲:在一個口袋中裝有4個紅球和6個白球,這些球除顏色外完全相同,顧客一次從中摸出3個球,若3個都是白球則無獎勵,若有1個紅球則獎勵10元購物券,若有2個紅球則獎勵20元購物券,若3個都是紅球則獎勵30元購物券.

(Ⅰ)求中獎的概率;

(Ⅱ)求顧客摸獎一次獲得購物券獎勵的平均值.

【答案】(Ⅰ)(Ⅱ)顧客摸獎一次獲得購物券獎勵的平均值為12

【解析】

(Ⅰ)利用對立事件的概率公式求中獎的概率. (Ⅱ)設顧客摸獎一次獲得購物券獎勵元,則,再求出對應的概率,再求出顧客摸獎一次獲得購物券獎勵的平均值.

(Ⅰ)中獎的概率

(Ⅱ)顧客摸獎一次獲得購物券獎勵元,則

所以的分布列為

0

10

20

30

答:顧客摸獎一次獲得購物券獎勵的平均值為12元.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某地區(qū)不同身高的未成年男性的體重平均值如下表.

身高/

60

70

80

90

100

110

120

130

140

150

160

170

體重/

6.13

7.90

9.99

12.15

15.02

17.50

20.92

26.86

31.11

38.85

47.25

55.05

1)根據表格提供的數據,能否建立恰當的函數模型,使它能比較近似地反映這個地區(qū)未成年男性體重與身高的函數關系?試寫出這個函數模型的關系式.

2)若體重超過相同身高男性體重平均值的1.2倍為偏胖,低于0.8倍為偏瘦,那么這個地區(qū)一名身高為,體重為的在校男生的體重是否正常?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】以下命題,①若實數,則

②歸納推理是由特殊到一般的推理,而類比推理是由特殊到特殊的推理;

③在回歸直線方程中,當變量每增加一個單位時,變量一定增加0.2單位.

④“若,則復數”類比推出“若,則”;

正確的個數是( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某學校為調查高三年級學生的身高情況,按隨機抽樣的方法抽取80名學生,得到男生身高情況的頻率分布直方圖(圖1)和女生身高情況的頻率分布直方圖(圖2).已知圖1中身高在170~175cm的男生人數有16人

.

(1)根據頻率分布直方圖,完成下列的列聯表,并判斷能有多大(百分比)的把握認為“身高與性別有關”?

總計

男生身高

女生身高

總計

(2)在上述80名學生中,從身高在170-175cm之間的學生按男、女性別分層抽樣的方法,抽出5人,從這5人中選派3人當旗手,求3人中恰好有一名女生的概率.

0.025

0.610

0.005

0.001

5.024

4.635

7.879

10.828

參考公式及參考數據如下:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓離心率為,四個頂點構成的四邊形的面積是4.

(Ⅰ)求橢圓的方程;

(Ⅱ)若直線與橢圓交于均在第一象限,軸、軸分別交于兩點,設直線的斜率為,直線的斜率分別為,且(其中為坐標原點).證明: 直線的斜率為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】袋子中有5個大小質地完全相同的球,其中2個紅球、3個黃球,從中不放回地依次隨機摸出2個球,求下列事件的概率:

1A=“第一次摸到紅球”;

2B=“第二次摸到紅球”;

3AB=“兩次都摸到紅球”.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在直角坐標系中,以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,圓的方程為,直線的極坐標方程為.

(I )寫出的極坐標方程和的平面直角坐標方程;

(Ⅱ) 若直線的極坐標方程為,設的交點為的交點為的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1時,若函數恰有一個零點,求實數的取值范圍;

2, 時,對任意,有成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】[選修4-4:坐標系與參數方程]

在平面直角坐標系中,直線的參數方程為(其中t為參數),現以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為

(1)寫出直線l普通方程和曲線C的直角坐標方程;

(2)過點且與直線平行的直線 兩點,求.

查看答案和解析>>

同步練習冊答案