過拋物線y2=2px(p>0)的焦點(diǎn)F作傾斜角為30°的直線交拋物線于A、B兩點(diǎn),若線段AB的長為8,則p=
 
考點(diǎn):拋物線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:拋物線的方程可求得焦點(diǎn)坐標(biāo),進(jìn)而根據(jù)斜率表示出直線的方程,與拋物線的方程聯(lián)立消去y,進(jìn)而根據(jù)韋達(dá)定理表示出x1+x2和x1x2,進(jìn)而利用配方法求得|x1-x2|,利用弦長公式表示出段AB的長求得p.
解答: 解:由題意可知過焦點(diǎn)的傾斜角為30°直線方程為y=
3
3
(x-
p
2
),
聯(lián)立
y2=2px
y=
3
3
(x-
p
2
)
可得:⇒x2-7px+
p2
4
=0,
∴x1+x2=7p,x1x2=
p2
4

∴|x1-x2|=
(x1+x2)2-4x1x2
=
(7p)2-4×
p2
4
=4
3
p,
∴|AB|=
1+(
3
3
)2
|x1-x2|=
2
3
3
×4
3
p=8,
解得:p=1,
故答案為:1
點(diǎn)評(píng):本題主要考查了拋物線的簡單性質(zhì).涉及直線與拋物線的關(guān)系時(shí),往往是利用韋達(dá)定理設(shè)而不求.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
msinxcosx+mcos2x+n(m>0)在區(qū)間[0,
π
4
]
上的值域?yàn)閇1,2].
(Ⅰ) 求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ) 在△ABC中,角A,B,C所對(duì)的邊長分別為a,b,c,若f(A)=1,sinB=4sin(π-C),△ABC的面積為
3
,求邊長a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b,c是△ABC的邊長,設(shè)l是△ABC的內(nèi)心,求
|IA|2
bc
+
|IB|2
ca
+
|IC|2
ab
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:方程[x]+[2x]+[4x]+[8x]+[16x]+[32x]=12345無實(shí)數(shù)解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
4
-
y2
12
=1的頂點(diǎn)到漸近線的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(
3x
-
2
x
)n
展開式中含
3x
的項(xiàng)是第8項(xiàng),則展開式中含
1
x
的項(xiàng)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

6名外語翻譯者中有4人會(huì)英語,另外2人會(huì)俄語.現(xiàn)從中抽出2人,則抽到英語,俄語翻譯者各1人的概率等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AC=AB=AA1,E是BC的中點(diǎn).
(1)求異面直線AE與A1C所成的角;
(2)若G為C1C上一點(diǎn),且EG⊥A1C,試確定點(diǎn)G的位置;
(3)在(2)的條件下,求二面角C-AG-E的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某廠生產(chǎn)的產(chǎn)品在出廠前都要做質(zhì)量檢測(cè),每件一等品都能通過檢測(cè),每件二等品通過檢測(cè)的概率均為
2
3
,現(xiàn)有5件產(chǎn)品,其中2件一等品.3件二等品.記該5件產(chǎn)品通過檢測(cè)的產(chǎn)品個(gè)數(shù)為ξ,則隨機(jī)變量的數(shù)學(xué)期望Eξ=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案