10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{2-x},x<2}\\{\frac{3}{4}{x}^{2}-3x+4,x≥2}\end{array}\right.$,若不等式a≤f(x)≤b的解集恰好為[a,b],則b-a=4.

分析 通過(guò)作出函數(shù)y=f(x)的圖象,利用a≤2且f(a)=f(b)=b,可知b=4,a=0.

解答 解:因?yàn)閥=22-x=4×$(\frac{1}{2})^{x}$的圖象在R上單調(diào)遞減,
且過(guò)定點(diǎn)(0,4),
y=$\frac{3}{4}$x2-3x+4的圖象是對(duì)稱軸為x=2,開口向上的拋物線,
所以容易得到函數(shù)y=f(x)的圖象,如圖,
且y=f(x)在(-∞,2)上單調(diào)遞減,
在(2,+∞)上單調(diào)遞增,
因?yàn)椴坏仁絘≤f(x)≤b的解集恰好為[a,b],
所以a≤2,且f(a)=f(b)=b,易知b=4,a=0,
所以b-a=4-0=4,
故答案為:4.

點(diǎn)評(píng) 本題是一道關(guān)于分段函數(shù)的應(yīng)用題,考查數(shù)形結(jié)合能力,考查分析問(wèn)題的能力,注意解題方法的積累,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知定義在(0,∞)上的函數(shù)f(x)的導(dǎo)函數(shù)f'(x)是連續(xù)不斷的,若方程f'(x)=0無(wú)解,且?x∈(0,+∞),f[f(x)-log2015x]=2017,設(shè)a=f(20.5),b=f(log43),c=f(logπ3),則a,b,c的大小關(guān)系是a>c>b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.上饒高鐵站B1進(jìn)站口有3個(gè)閘機(jī)檢票通道口,若某一家庭有3個(gè)人檢票進(jìn)站,如果同一個(gè)人進(jìn)的閘機(jī)檢票通道口選法不同,或幾個(gè)人進(jìn)同一個(gè)閘機(jī)檢票通道口但次序不同,都視為不同的進(jìn)站方式,那么這個(gè)家庭3個(gè)人的不同進(jìn)站方式有(  )種.
A.24B.36C.42D.60

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{-3≤3x-y≤-1}\\{-1≤x+y≤1}\end{array}\right.$,若z=ax+y有最大值$\frac{5}{2}$,則實(shí)數(shù)a的值是( 。
A.2B.$\frac{5}{2}$C.-2D.-$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.$\frac{3+i}{3-i}$=( 。
A.$\frac{4}{5}$+$\frac{3}{5}$iB.$\frac{4}{5}$-$\frac{3}{5}$iC.$\frac{1}{2}$+$\frac{3}{2}$iD.$\frac{1}{2}$-$\frac{3}{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.執(zhí)行如圖的程序框圖,則輸出的結(jié)果為( 。
A.15B.3C.-11D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知△ABC中,D為邊AC上一點(diǎn),BC=2$\sqrt{2}$,∠DBC=45°.
(Ⅰ)若CD=2$\sqrt{5}$,求△BCD的面積;
(Ⅱ)若角C為銳角,AB=6$\sqrt{2}$,sinA=$\frac{\sqrt{10}}{10}$,求CD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)△ABC的內(nèi)角A,B,C所對(duì)邊的長(zhǎng)分別為a,b,c.若sinA=2sinB,c=4,C=$\frac{π}{3}$,則△ABC的面積為$\frac{8\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,離心率為$\frac{1}{2}$,點(diǎn)A在橢圓C上,|AF1|=2,∠F1AF2=60°,過(guò)F2與坐標(biāo)軸不垂直的直線l與橢圓C交于P,Q兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若P,Q的中點(diǎn)為N,在線段OF2上是否存在點(diǎn)M(m,0),使得MN⊥PQ?若存在,求實(shí)數(shù)m的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案