某單位投資生產(chǎn)A產(chǎn)品時,每生產(chǎn)1百噸需要資金2百萬元,需場地2百平方米,可獲利潤3百萬元;投資生產(chǎn)B產(chǎn)品時,每生產(chǎn)1百噸需要資金3百萬元,需場地1百平方米,可獲利潤2百萬元.現(xiàn)該單位有可使用資金14百萬元,場地9百平方米,如果利用這些資金和場地用來生產(chǎn)A、B兩種產(chǎn)品,那么分別生產(chǎn)A、B兩種產(chǎn)品各多少時,可獲得最大利潤?最大利潤是多少?
分析:由投資生產(chǎn)A產(chǎn)品時,每生產(chǎn)1百噸需要資金2百萬元,需場地2百平方米,可獲利潤3百萬元;投資生產(chǎn)B產(chǎn)品時,每生產(chǎn)1百米需要資金3百萬元,需場地1百平方米,可獲利潤2百萬元.現(xiàn)該單位有可使用資金14百萬元,場地9百平方米,我們設(shè)生產(chǎn)A產(chǎn)品x百噸,生產(chǎn)B產(chǎn)品y百米,共獲得利潤S百萬元,我們可以得到滿足條件的約束條件和目標(biāo)函數(shù),然后利用線性規(guī)劃來解答即可得到答案.
解答:精英家教網(wǎng)解:設(shè)生產(chǎn)A產(chǎn)品x百噸,生產(chǎn)B產(chǎn)品y百米,共獲得利潤S百萬元,(1分)
2x+3y≤14
2x+y≤9
x≥0
y≥0
(5分)
目標(biāo)函數(shù)為S=3x+2y,
作出可行域如圖(6分)
2x+y=9
2x+3y=14
解得直線與2x+y=9和2x+3y=14的交點為(
13
4
5
2
)
(7分)
平移直線y=-
3
2
x+
S
2
,當(dāng)它經(jīng)過直線與2x+y=9和2x+3y=14的交點(
13
4
,
5
2
)
時,
直線y=-
3
2
x+
S
2
在y軸上截距
S
2
最大,S也最大. (9分)
此時,S=3×
13
4
+2×
5
2
=14.75
. (10分)
因此,生產(chǎn)A產(chǎn)品3.25百噸,生產(chǎn)B產(chǎn)品2.5百米,可獲得最大利潤,最大利潤為1475萬元. (12分)
點評:本題考查的知識點是簡單線性規(guī)劃的應(yīng)用,根據(jù)已知條件的限制條件,構(gòu)造出約束條件和目標(biāo)函數(shù)是解答此類問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某單位投資生產(chǎn)A,B兩種產(chǎn)品,已知每生產(chǎn)A種產(chǎn)品100t需要資金200萬元,場地200m2,可獲利潤300萬元;每生產(chǎn)B種產(chǎn)品100t需要資金300萬元,場地100m2,可獲利潤200萬元.若該單位現(xiàn)有可使用資金1200萬元,場地800m2,則A,B兩種產(chǎn)品應(yīng)各生產(chǎn)多少,才能使利潤總額達到最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年高考預(yù)測卷數(shù)學(xué)科(二)新課標(biāo) 題型:044

某單位投資生產(chǎn)A產(chǎn)品時,每生產(chǎn)1百噸需要資金2百萬元,需場地2百平方米,可獲利潤3百萬元;投資生產(chǎn)B產(chǎn)品時,每生產(chǎn)1百米需要資金3百萬元,需場地1百平方米,可獲利潤2百萬元.現(xiàn)該單位有可使用資金14百萬元,場地9百平方米,如果利用這些資金和場地用來生產(chǎn)A、B兩種產(chǎn)品,那么分別生產(chǎn)A、B兩種產(chǎn)品各多少時,可獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某單位投資生產(chǎn)A產(chǎn)品時,每生產(chǎn)1百噸需要資金2百萬元,需場地2百平方米,可獲利潤3百萬元;投資生產(chǎn)B產(chǎn)品時,每生產(chǎn)1百米需要資金3百萬元,需場地1百平方米,可獲利潤2百萬元.現(xiàn)該單位有可使用資金14百萬元,場地9百平方米,如果利用這些資金和場地用來生產(chǎn)A、B兩種產(chǎn)品,那么分別生產(chǎn)A、B兩種產(chǎn)品各多少時,可獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年山東省泰安市肥城市省級規(guī)范化學(xué)校高三第三次聯(lián)考數(shù)學(xué)試卷1(文理合卷)(解析版) 題型:解答題

某單位投資生產(chǎn)A產(chǎn)品時,每生產(chǎn)1百噸需要資金2百萬元,需場地2百平方米,可獲利潤3百萬元;投資生產(chǎn)B產(chǎn)品時,每生產(chǎn)1百米需要資金3百萬元,需場地1百平方米,可獲利潤2百萬元.現(xiàn)該單位有可使用資金14百萬元,場地9百平方米,如果利用這些資金和場地用來生產(chǎn)A、B兩種產(chǎn)品,那么分別生產(chǎn)A、B兩種產(chǎn)品各多少時,可獲得最大利潤?最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案