2.已知集合A={0,1,2},B={y|y=2x,x∈A}則A∩B=( 。
A.{0,1,2}B.{1,2}C.{1,2,4}D.{1,4}

分析 由題意求出集合B,由交集的運(yùn)算求出A∩B.

解答 解:由題意可知,集合A={0,1,2},
則B={y|y=2x,x∈A}={1,2,4},
所以A∩B={1,2},
故選:B.

點(diǎn)評 本題考查交集及其運(yùn)算,以及集合中元素的計算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=-x2+alnx,a∈R.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)a=4時,記函數(shù)g(x)=f(x)+kx,設(shè)x1、x2(x1<x2)是方程g(x)=0的兩個根,x0是x1、x2的等差中項,g′(x)為函數(shù)g(x)的導(dǎo)函數(shù),求證:g′(x0)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知拋物線y2=4x與雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)有相同的焦點(diǎn)F,點(diǎn)A是兩曲線的一個交點(diǎn),且AF⊥x軸,則雙曲線的離心率為( 。
A.2$\sqrt{2}$-1B.$\sqrt{2}$+1C.8$\sqrt{2}$-8D.2$\sqrt{2}$-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.?dāng)?shù)列{an}中,a1=2,${a_{n+1}}=\frac{n+1}{2n}{a_n}$(n∈N*).
(1)證明數(shù)列$\{\frac{a_n}{n}\}$是等比數(shù)列,并求數(shù)列{an}的通項公式;
(2)設(shè)${b_n}=\frac{a_n^2}{{16{n^2}-a_n^2}}$,若數(shù)列{bn}的前n項和是Tn,求證:${T_n}<\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知在△ABC中,∠ACB=90°,BC=3,AC=4,P是線段AB上的點(diǎn),則P到AC,BC的距離的乘積的最大值為(  )
A.3B.2C.$2\sqrt{3}$D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.運(yùn)行如圖所示的程序框圖,則輸出結(jié)果為(  )
A.1008B.1009C.2016D.2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)$f(x)=\frac{1}{2}{x^2}+(1-a)x-alnx\;,\;a∈R$.
(1)若f(x)存在極值點(diǎn)為1,求a的值;
(2)若f(x)存在兩個不同零點(diǎn)x1,x2,求證:x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.秦九昭是我國南宋時期的數(shù)學(xué)家,他在所著的《數(shù)學(xué)九章》中提出的多項式求值的秦九昭算法,至今仍是比較先進(jìn)的算法,如圖所示的程序框圖給出了利用秦九昭算法求某多項式值的一個實(shí)例,若輸入n,x的值分別為3,4,則輸出y的值為( 。
A.6B.25C.100D.400

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆湖南衡陽縣四中高三9月月考數(shù)學(xué)(文)試卷(解析版) 題型:解答題

在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為

(1)求曲線的直角坐標(biāo)方程并指出其形狀;

(2)設(shè)是曲線上的動點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案