17.已知在△ABC中,∠ACB=90°,BC=3,AC=4,P是線段AB上的點(diǎn),則P到AC,BC的距離的乘積的最大值為(  )
A.3B.2C.$2\sqrt{3}$D.9

分析 由題意,以CB和CA建立直角坐標(biāo)系,可得AB直線方程,P是線段AB上的點(diǎn),設(shè)P(x,y),P到AC,BC的距離的乘積的最大值即為xy的最大值.利用基本不等式求解即可.

解答 解:以CB和CA建立直角坐標(biāo)系,BC=3,AC=4,即A(0,4),B(3,0).
可得AB直線方程為:4x+3y=12.
P是線段AB上的點(diǎn),設(shè)P(x,y),P到AC,BC的距離的乘積的最大值即為xy的最大值.
即xy=$\frac{1}{12}×4x×3y$$≤\frac{1}{12}(\frac{4x+3y}{2})^{2}$=3,當(dāng)且僅當(dāng)4x=3y是取等號(hào).
∴P到AC,BC的距離的乘積的最大值為3.
故選A

點(diǎn)評(píng) 本題主要考查了解三角形的問題.考查了學(xué)生轉(zhuǎn)化和化歸思想,函數(shù)思想的運(yùn)用.考查了學(xué)生分析問題和解決問題的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=$\sqrt{3}$sin2x+cos2x,則下列表述正確的是( 。
A.f(x)在(-$\frac{π}{3}$,-$\frac{π}{6}$)單調(diào)遞減B.f(x)在($\frac{π}{6}$,$\frac{π}{3}$)單調(diào)遞增
C.f(x)在(-$\frac{π}{6}$,0)單調(diào)遞減D.f(x)在(0,$\frac{π}{6}$)單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=eax+b在(0,f(0))處的切線為y=x+1.
(1)若對(duì)任意x∈R,有f(x)≥kx成立,求實(shí)數(shù)k的取值范圍.
(2)證明:對(duì)任意t∈(-∞,2],f(x)>t+lnx成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.?孫子算經(jīng)?中有道算術(shù)題:“今有百鹿入城,家取一鹿不盡,又三家共一鹿適盡,問城中家?guī)缀?”意思是?00頭鹿,每戶分1頭還有剩余;每3戶再分1頭,正好分完,問共有多少戶人家?設(shè)計(jì)框圖如圖,則輸出的值是( 。
A.74B.75C.76D.77

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.若曲線C的極坐標(biāo)方程為ρcos2θ-4sinθ=0,P點(diǎn)的極坐標(biāo)為$({3,\frac{π}{2}})$,在平面直角坐標(biāo)系中,直線l經(jīng)過點(diǎn)P,斜率為$\sqrt{3}$
(Ⅰ)寫出曲線C的直角坐標(biāo)方程和直線l的參數(shù)方程;
(Ⅱ)設(shè)直線l與曲線C相交于A,B兩點(diǎn),求$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合A={0,1,2},B={y|y=2x,x∈A}則A∩B=( 。
A.{0,1,2}B.{1,2}C.{1,2,4}D.{1,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,扇形AOB的圓心角為120°,點(diǎn)P在弦AB上,且$AP=\frac{1}{3}AB$,延長(zhǎng)OP交弧AB于C.現(xiàn)向扇形AOB內(nèi)投點(diǎn),則該點(diǎn)落在扇形AOC內(nèi)的概率為(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{7}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.為了打好脫貧攻堅(jiān)戰(zhàn),某貧困縣農(nóng)科院針對(duì)玉米種植情況進(jìn)行調(diào)研,力爭(zhēng)有效地改良玉米品種,為農(nóng)民提供技術(shù)支援.現(xiàn)對(duì)已選出的一組玉米的莖高進(jìn)行統(tǒng)計(jì),獲得莖葉圖如右圖(單位:厘米),設(shè)莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米.
(1)完成2×2列聯(lián)表,并判斷是否可以在犯錯(cuò)誤概率不超過1%的前提下,認(rèn)為抗倒伏與玉米矮莖有關(guān)?
(2)為了改良玉米品種,現(xiàn)采用分層抽樣的方式從抗倒伏的玉米中抽出5株,再從這5株玉米中選取2株進(jìn)行雜交實(shí)驗(yàn),選取的植株均為矮莖的概率是多少?
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
( ${{K}^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆湖南長(zhǎng)沙長(zhǎng)郡中學(xué)高三上周測(cè)十二數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

執(zhí)行如圖所示的程序框圖,若輸出的,則判斷框內(nèi)的正整數(shù)的值為( )

A.7 B.6,7

C.6,7,8 D.8,9

查看答案和解析>>

同步練習(xí)冊(cè)答案