下列函數(shù)中,在區(qū)間(0,+∞)上為增函數(shù)的是( 。
A、y=log0.3(x+2)
B、y=3-x
C、y=
x+1
D、y=-x2
考點(diǎn):函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)二次函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性,再由復(fù)合函數(shù)的單調(diào)性對(duì)各個(gè)選項(xiàng)的正確性進(jìn)行判斷,從而得到結(jié)論.
解答: 解:由于二次函數(shù)y=-x2 在區(qū)間(0,+∞)上是減函數(shù),故排除D.
A、由于函數(shù)y=log0.3(x+2)由于函數(shù)y=log0.3u與u=x+2復(fù)合而成,由復(fù)合函數(shù)的單調(diào)性知函數(shù)y=log0.3(x+2)為減函數(shù);
B、由于函數(shù)y=3-x由于函數(shù)y=3u與u=-x復(fù)合而成,由復(fù)合函數(shù)的單調(diào)性知函數(shù)y=3-x為減函數(shù);
故選:C.
點(diǎn)評(píng):本題主要考查二次函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若不等式組
x≥0
y≥2x
kx-y+1≥0
表示的平面區(qū)域是一個(gè)直角三角形,且y=2x與kx-y+1=0垂直,則該三角形的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=m(x-2)(x+m+5),若存在x∈(-∞,4)使得f(x)>0,則實(shí)數(shù)m的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項(xiàng)數(shù)列{an}滿足a1=1,
a1
+
a2
+…+
an
=
1
2
(an+n),且
an
+
an-1
≠1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{
an
•2n}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}、{bn}滿足a1=1,且an,an+1是函數(shù)f(x)=x2-bnx+2n的兩個(gè)零點(diǎn),則b10等于(  )
A、24B、32C、48D、64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正四棱錐P-ABCD棱長都等于a,側(cè)棱PB,PD的中點(diǎn)分別為M,N,則截面AMN與底面ABCD所成銳二面角的正切值為( 。
A、
3
3
B、
1
2
C、1
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)證明:函數(shù)f(x)=
1
x
-x2
在[1,2]是減函數(shù);
(2)判斷函數(shù)f(x)=
1
x3
的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=5,a2=2,且2(an+an+2)=5an+1.求證:
(1)數(shù)列{an+1-2an}和{an+1-
1
2
an}都是等比數(shù)列;
(2)求數(shù)列{2n-3an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=f(x),f(
1
2
)=4
,對(duì)任意實(shí)數(shù)x,y滿足:f(x+y)=f(x)+f(y)-3
(Ⅰ)當(dāng)n∈N*時(shí)求f(n)的表達(dá)式;
(Ⅱ)若b1=1,bn+1=
bn
1+bn•f(n-1)
(n∈N*)
,求bn;
(Ⅲ)記c n=
4bn
(n∈N*)
,試證c1+c2+…+c2014<89.

查看答案和解析>>

同步練習(xí)冊(cè)答案