考點(diǎn):數(shù)列的求和,等比關(guān)系的確定
專題:等差數(shù)列與等比數(shù)列
分析:(1)2(a
n+a
n+2)=5a
n+1.求可得2(a
n+2-2a
n+1)=a
n+1-2a
n,a
n+2-
a
n+1=2(a
n+1-
a
n),根據(jù)等比數(shù)列的定義判定出數(shù)列都是等比數(shù)列;
(2)由(1)解的a
n,再求出2
n-3a
n=
(2-2
2n-5),再求出前n項(xiàng)和.
解答:
解:(1)∵2(a
n+a
n+2)=5a
n+1,
∴2a
n+2a
n+2=5a
n+1,
∴2(a
n+2-2a
n+1)=a
n+1-2a
n,
∴
=
,
∴a
2-2a
1=2-2×5=-8,
∴{a
n+1-2a
n}是以-8為首項(xiàng),
為公比的等比數(shù)列;
∴a
n+1-2a
n=-8×
()n-1①
∵2(a
n+a
n+2)=5a
n+1,
∴a
n+2-
a
n+1=2(a
n+1-
a
n)
∴
=2,
∴a
2-
a
1=2-
×5=-
,
∴{a
n+1-
a
n}是以-
為首項(xiàng),2為公比的等比數(shù)列;
∴a
n+1-
a
n=
-×2n-1②,
(2)由(1)知a
n+1-2a
n=-8×
()n-1①
a
n+1-
a
n=
-×2n-1②,
由①②解得
a
n=
(2
4-n-2
n-2),
驗(yàn)證a
1=5,a
2=2適合上式,
∴2
n-3a
n═
(2
4-n-2
n-2)•2
n-3=
(2-2
2n-5)
∴S
n=
(2-2
-3)+
(2-2
-1)+
(2-2)+…+
((2-2
2n-5)=
[2n-(2
-3+2
-1+2+…+2
2n-5)]=
[2n-
]=
+-
點(diǎn)評:本題主要考查了等比關(guān)系的確定,等比數(shù)列的求和問題.解題的關(guān)鍵是對等比數(shù)列基礎(chǔ)知識點(diǎn)的熟練掌握,屬于中檔題