18.同時(shí)拋擲兩個(gè)骰子(各個(gè)面上分別標(biāo)有數(shù)字1,2,3,4,5,6),則向上的數(shù)之積為偶數(shù)的概率是$\frac{3}{4}$.

分析 先求出向上的數(shù)之積為奇數(shù)的概率,根據(jù)對(duì)立事件的性質(zhì)能求出向上的數(shù)之積為偶數(shù)的概率.

解答 解:每擲1個(gè)骰子都有6種情況,所以同時(shí)擲兩個(gè)骰子總的結(jié)果數(shù)為6×6=36.
向上的數(shù)之積為偶數(shù)的情況比較多,可以先考慮其對(duì)立事件,即向上的數(shù)之積為奇數(shù).
向上的數(shù)之積為奇數(shù)的基本事件有:
(1,1),(1,3),(1,5),(3,1),(3,3),(3,5),(5,1),(5,3),(5,5),共9個(gè),
故向上的數(shù)之積為奇數(shù)的概率為P(B)=$\frac{9}{36}=\frac{1}{4}$.
根據(jù)對(duì)立事件的性質(zhì)知,向上的數(shù)之積為偶數(shù)的概率為P(C)=1-P(B)=1-$\frac{1}{4}=\frac{3}{4}$.
故答案為:$\frac{3}{4}$.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意列舉法和對(duì)立事件概率計(jì)算公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知集合A={x|-3<2x+1<11},B={x|m-1≤x≤2m+1}
(1)當(dāng)m=3時(shí),求A∩∁RB;
(2)若A∪B=A,求m的取值范圍..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在△ABC中,B=30°,AB=$\sqrt{3}$,AC=1,則△ABC的面積是( 。
A.$\frac{\sqrt{3}}{4}$B.$\frac{\sqrt{3}}{2}$C.$\sqrt{3}$或$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$或$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)$f(x)=\left\{\begin{array}{l}{log_2}({{x^2}+x+a}),x≥1\\ 1-{x^2},x<1\end{array}\right.$的值域?yàn)镽,則常數(shù)a的取值范圍是( 。
A.[0,+∞)B.(-2,-1]C.(-2,0]D.(-∞,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.函數(shù)f(x)=-$\frac{1}{3}$x3+x2在區(qū)間[0,4]上的最大值是( 。
A.0B.-$\frac{16}{3}$C.$\frac{4}{3}$D.$\frac{16}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.求拋物線y2=2x與直線2x+y-2=0圍成的平面圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.y=2cos($\frac{π}{4}$-2x)的單調(diào)減區(qū)間是( 。
A.[kπ+$\frac{π}{8}$,kπ+$\frac{5}{8}$π](k∈Z)B.[-$\frac{3}{8}$π+kπ,$\frac{π}{8}$+kπ](k∈Z)
C.[$\frac{π}{8}$+2kπ,$\frac{5π}{8}$+2kπ](k∈Z)D.[-$\frac{3}{8}$π+2kπ,$\frac{π}{8}$+2kπ](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.給出如圖所示的程序,執(zhí)行該程序時(shí),若輸入的x為3,則輸出的y值是( 。
A.3B.6C.9D.27

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.圓O的半徑為3,一條弦AB=4,P為圓O上任意一點(diǎn),則$\overrightarrow{AB}$•$\overrightarrow{BP}$的取值范圍為( 。
A.[-16,0]B.[0,16]C.[-4,20]D.[-20,4]

查看答案和解析>>

同步練習(xí)冊(cè)答案