13.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{2}$=1的離心率為$\sqrt{3}$,則它的漸近線方程是y=±$\sqrt{2}$x.

分析 由離心率公式解出a,再由雙曲線方程寫出漸近線方程即可.

解答 解:雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{2}$=1的離心率為$\sqrt{3}$,
∴e=$\frac{c}{a}$=$\frac{\sqrt{{a}^{2}+2}}{a}$=$\sqrt{3}$,
∴解得a=1,
∴雙曲線的漸近線方程為y=±$\sqrt{2}$x,
故答案為:y=±$\sqrt{2}$x.

點(diǎn)評 本題考查雙曲線的方程和性質(zhì),考查雙曲線的離心率與漸近線方程,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知定義在R上的函數(shù)f(x),對任意實(shí)數(shù)x滿足f(x+2)=-f(x-2),且當(dāng)x∈[0,8)時,f(x)=2x-10,則f(2015)=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若$\frac{3sinα-2cosα}{4sinα+5cosα}$=$\frac{4}{13}$,則tanα的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓C的焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),長軸長為2$\sqrt{5}$,設(shè)直線y=2x-2交橢圓C于A、B兩點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)O為坐標(biāo)原點(diǎn),求△OAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.請寫出3個不同的函數(shù)y=f(x)解析式,滿足f(1)=1,f(2)=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)$f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<\frac{π}{2})$的部分圖象如圖所示:
(1)求函數(shù)f(x)的解析式; 
(2)求出函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.某中學(xué)共有學(xué)生2000人,其中高一年級學(xué)生共有650人,現(xiàn)從全校學(xué)生中隨機(jī)抽取1人,抽到高二年級學(xué)生的概率是0.40,估計該校高三年級學(xué)生共有550人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知公差不為0的等差數(shù)列{an}的首項為2,且a1,a2,a4成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)令${b_n}=\frac{1}{{{{(a_n^{\;}+1)}^2}-1}}(n∈{N^*})$,設(shè)數(shù)列{bn}的前n項和為Sn,證明:${S_n}<\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)函數(shù)f(x)定義域?yàn)镽,f(-x)=f(x),f(x)=f(2-x),當(dāng)x∈[0,1]時,f(x)=x3,則函數(shù)g(x)=|cos(πx)|-f(x)在區(qū)間[-$\frac{1}{2}$,$\frac{5}{2}$]上的所有零點(diǎn)的和為7.

查看答案和解析>>

同步練習(xí)冊答案