7.如圖,某生態(tài)園將一塊三角形地ABC的一角APQ開辟為水果園,已知角A為120°,AB,AC的長度均大于200米,現(xiàn)在邊界AP,AQ處建圍墻,在PQ處圍竹籬笆.
(1)若圍墻AP、AQ總長度為200米,如何可使得三角形地塊APQ面積最大?
(2)已知竹籬笆長為$50\sqrt{3}$米,AP段圍墻高1米,AQ段圍墻高2米,造價均為每平方米100元,求圍墻總造價的取值范圍.

分析 (1)設(shè)AP=x(米),則AQ=200-x,得${S_{△APQ}}=\frac{1}{2}x({200-x})sin{120^0}≤\frac{{\sqrt{3}}}{4}{({\frac{200}{2}})^2}=2500\sqrt{3}$(米2)即可
(2)由正弦定理$\frac{AP}{sin∠AQP}=\frac{AQ}{sin∠APQ}=\frac{PQ}{sin∠A}$,得AP=100sin∠AQP,AQ=100sin∠APQ故圍墻總造價$y=100({AP+2AQ})=10000({sin∠AQP+2sin∠APQ})=10000\sqrt{3}cos∠AQP$,由$0<∠AQP<\frac{π}{3}$,$\frac{{\sqrt{3}}}{2}<\sqrt{3}cos∠AQP<\sqrt{3}$,得y∈$({5000\sqrt{3},10000\sqrt{3}})$.

解答 解:(1)設(shè)AP=x(米),則AQ=200-x,
所以${S_{△APQ}}=\frac{1}{2}x({200-x})sin{120^0}≤\frac{{\sqrt{3}}}{4}{({\frac{200}{2}})^2}=2500\sqrt{3}$(米2
當(dāng)且僅當(dāng)x=200-x時,取等號.
即AP=AQ=100(米),${S_{max}}=2500\sqrt{3}$(米2).…(6分)
(2)由正弦定理$\frac{AP}{sin∠AQP}=\frac{AQ}{sin∠APQ}=\frac{PQ}{sin∠A}$,得AP=100sin∠AQP,AQ=100sin∠APQ
故圍墻總造價$y=100({AP+2AQ})=10000({sin∠AQP+2sin∠APQ})=10000\sqrt{3}cos∠AQP$
因為AP≥AQ,所以$0<∠AQP<\frac{π}{3}$,∴$\frac{{\sqrt{3}}}{2}<\sqrt{3}cos∠AQP<\sqrt{3}$,
所以y∈$({5000\sqrt{3},10000\sqrt{3}})$.
答:圍墻總造價的取值范圍為$({5000\sqrt{3},10000\sqrt{3}})$(元).…(14分)

點評 本題考查了解三角形在實際問題中的應(yīng)用,基本不等式的應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)$f(x)=\sqrt{1+{x^2}}$,x∈R.
(1)證明對?a、b∈R,且a≠b,總有:|f(a)-f(b)|<|a-b|;
(2)設(shè)a、b、c∈R,且$a+b+c=f(2\sqrt{2})$,證明:a+b+c≥ab+bc+ca.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在△ABC中,∠B=$\frac{π}{6}$,AC=$\sqrt{5}$,D是AB邊上一點,CD=2,△ACD的面積為2,∠ACD為銳角,則BC=$\frac{8\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.根據(jù)如圖所示的偽代碼知,輸出的a的值為21.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.我國古代數(shù)學(xué)名著《九章算術(shù)》的論割圓術(shù)中有:“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣.”它體現(xiàn)了一種無限與有限的轉(zhuǎn)化過程.比如在表達式1+$\frac{1}{1+\frac{1}{1+…}}$中“…”即代表無數(shù)次重復(fù),但原式卻是個定值,它可以通過方程1+$\frac{1}{x}$=x求得x=$\frac{\sqrt{5}+1}{2}$.類比上述過程,則$\sqrt{3+2\sqrt{3+2\sqrt{…}}}$=( 。
A.3B.$\frac{\sqrt{13}+1}{2}$C.6D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知ω為正整數(shù),函數(shù)f(x)=sinωxcosωx+${cos^2}ωx-\frac{1}{2}$在區(qū)間$({-\frac{π}{3},\frac{π}{12}})$內(nèi)單調(diào)遞增,則函數(shù)f(x)( 。
A.最小值為$-\frac{1}{2}$,其圖象關(guān)于點$({\frac{π}{4},0})$對稱
B.最大值為$\frac{{\sqrt{2}}}{2}$,其圖象關(guān)于直線$x=-\frac{π}{8}$對稱
C.最小正周期為2π,其圖象關(guān)于點$({\frac{3π}{4},0})$對稱
D.最小正周期為π,其圖象關(guān)于直線$x=-\frac{3π}{8}$對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知全集U=R,集合A={x|x(x+2)<0},B={x||x|≤1},則如圖陰影部分表示的集合是( 。
A.(-2,1)B.[-1,0]∪[1,2)C.(-2,-1)∪[0,1]D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知a,b∈R,且ex+1≥ax+b對?x∈R恒成立(其中e為自然對數(shù)的底數(shù)),則ab的最大值為( 。
A.$\frac{1}{2}{e^3}$B.$\frac{{\sqrt{2}}}{2}{e^3}$C.$\frac{{\sqrt{3}}}{2}{e^3}$D.e3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知F1,F(xiàn)2是橢圓和雙曲線的公共焦點,P是它們的一個公共點,且$∠{F_1}P{F_2}=\frac{π}{3}$,則橢圓和雙曲線離心率倒數(shù)之和的最大值為( 。
A.$\frac{4}{3}$B.$\frac{{4\sqrt{3}}}{3}$C.4D.$\frac{{4\sqrt{6}}}{3}$

查看答案和解析>>

同步練習(xí)冊答案