【題目】已知直線l經(jīng)過點(diǎn)P(2,﹣1),且在兩坐標(biāo)軸上的截距之和為2,圓M的圓心在直線2x+y=0上,且與直線l相切于點(diǎn)P.
(1)求直線l的方程;
(2)求圓M的方程;
(3)求圓M在y軸上截得的弦長.
【答案】
(1)解:設(shè)直線l: ,則
∵直線l經(jīng)過點(diǎn)P(2,﹣1),且在兩坐標(biāo)軸上的截距之和為2,
∴ ,
∴a=1,b=1,
∴直線l的方程為x+y=1
(2)解:圓M的圓心M坐標(biāo)設(shè)為(m,﹣2m),則 =1,
∴m=1,
∴圓心M(1,﹣2),半徑r= ,
∴圓M的方程為:(x﹣1)2+(y+2)2=2
(3)解:令x=0,可得y=﹣2±1,
∴圓M在y軸上截得的弦長為2
【解析】(1)設(shè)直線l: ,利用直線l經(jīng)過點(diǎn)P(2,﹣1),且在兩坐標(biāo)軸上的截距之和為2,建立方程組,求出a,b,即可求直線l的方程;(2)圓M的圓心M坐標(biāo)設(shè)為(m,﹣2m),則 =1,求出圓心坐標(biāo)與半徑,即可求圓M的方程;(3)令x=0,可得y=﹣2±1.即可求圓M在y軸上截得的弦長.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實(shí)數(shù)λ>0,設(shè)函數(shù)f(x)=eλx﹣x.
(Ⅰ)當(dāng)λ=1時(shí),求函數(shù)f(x)的極值;
(Ⅱ)若對任意x∈(0,+∞),不等式f(x)≥0恒成立,求λ的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如下圖所示的幾何體中, 為三棱柱,且,四邊形為平行四邊形, , .
(1)求證: ;
(2)若,求證: ;
(3)若,二面角的余弦值為若,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,離心率為,設(shè)直線的斜率是,且與橢圓交于, 兩點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程.
(Ⅱ)若直線在軸上的截距是,求實(shí)數(shù)的取值范圍.
(Ⅲ)以為底作等腰三角形,頂點(diǎn)為,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lg(x2+tx+2)(t為常數(shù),且﹣2 <t<2 ).
(1)當(dāng)x∈[0,2]時(shí),求函數(shù)f(x)的最小值(用t表示);
(2)是否存在不同的實(shí)數(shù)a,b,使得f(a)=lga,f(b)=lgb,并且a,b∈(0,2).若存在,求出實(shí)數(shù)t的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在上的奇函數(shù).
(1)當(dāng)時(shí), ,若當(dāng)時(shí), 恒成立,求的最小值;
(2)若的圖像關(guān)于對稱,且時(shí), ,求當(dāng)時(shí), 的解析式;
(3)當(dāng)時(shí), .若對任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知任意角θ以x軸非負(fù)半軸為始邊,若終邊經(jīng)過點(diǎn)P(x0 , y0),且|OP|=r(r>0),定義sicosθ= ,稱“sicosθ”為“正余弦函數(shù)”.對于正余弦函數(shù)y=sicosx,有同學(xué)得到如下結(jié)論: ①該函數(shù)是偶函數(shù);
②該函數(shù)的一個(gè)對稱中心是( ,0);
③該函數(shù)的單調(diào)遞減區(qū)間是[2kπ﹣ ,2kπ+ ],k∈Z.
④該函數(shù)的圖象與直線y= 沒有公共點(diǎn);
以上結(jié)論中,所有正確的序號是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.
(1)證明PA∥平面EDB;
(2)證明PB⊥平面EFD;
(3)求二面角C﹣PB﹣D的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com