14.復(fù)數(shù)z=1+2i,那么$\frac{1}{z}$等于( 。
A.$\frac{\sqrt{5}}{5}$+$\frac{2\sqrt{5}}{5}$iB.$\frac{\sqrt{5}}{5}$-$\frac{2\sqrt{5}}{5}$iC.$\frac{1}{5}$+$\frac{2}{5}$iD.$\frac{1}{5}$-$\frac{2}{5}$i

分析 直接利用復(fù)數(shù)的除法的運(yùn)算法則化簡(jiǎn)求解即可.

解答 解:復(fù)數(shù)z=1+2i,那么$\frac{1}{z}$=$\frac{1}{1+2i}$=$\frac{1-2i}{5}$=$\frac{1}{5}$$-\frac{2}{5}i$.
故選:D.

點(diǎn)評(píng) 本題考查復(fù)數(shù)的除法的運(yùn)算法則的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知a>0且曲線y=$\sqrt{x}$、x=a與y=0所圍成的封閉區(qū)域的面積為a2,則a=$\frac{4}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若拋物線x2=ay(a≠0)在x=1處的切線傾斜角為45°,則該拋物線的準(zhǔn)線方程為y=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.過(guò)A(1,2)和B(3,4)兩點(diǎn)的直線的斜率為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知點(diǎn)A,B,C都在球面上,且球心O到平面ABC的距離等于球的半徑的$\frac{1}{2}$,且AB=2,AC=2$\sqrt{2}$,BC=2$\sqrt{3}$,設(shè)三棱錐O-ABC的體積為V1,球的體積為V2,則$\frac{V_1}{V_2}$=( 。
A.$\frac{{\sqrt{2}}}{16π}$B.$\frac{{\sqrt{2}}}{8π}$C.$\frac{{\sqrt{2}}}{4π}$D.$\frac{{\sqrt{2}}}{2π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.f(x)是定義在R上可導(dǎo)函數(shù),且f′(x)>f(x),則對(duì)任意正實(shí)數(shù)a,下列成立的是( 。
A.f(a)<$\frac{f(0)}{{e}^{ax}}$B.f(a)>$\frac{f(0)}{{e}^{a}}$C.f(a)<eaf(0)D.f(a)>eaf(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)f(x)=$\frac{|x|}{x+2}$-kx2(k∈R)有四個(gè)不同的零點(diǎn),則實(shí)數(shù)k的取值范圍是( 。
A.k<0B.k<1C.0<k<1D.k>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(1,-3),若向量$\overrightarrow{a}$+$\overrightarrow$與向量$\overrightarrow{c}$=(-2,x)共線,則x=( 。
A.-1B.-4C.1D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在△ABC中,a=2,b=3,則$\frac{sinA}{sinB}$=( 。
A.$\frac{3}{2}$B.$\frac{2}{3}$C.$\frac{2}{5}$D.不確定

查看答案和解析>>

同步練習(xí)冊(cè)答案