【題目】四名同學(xué)各擲骰子5次,分別記錄每次骰子出現(xiàn)的點(diǎn)數(shù),根據(jù)四名同學(xué)的統(tǒng)計(jì)結(jié)果,可以判斷出一定沒有出現(xiàn)點(diǎn)數(shù)6的是(

A.平均數(shù)為3.中位數(shù)為2B.中位數(shù)為3.眾數(shù)為2

C.平均數(shù)為2.方差為2.4D.中位數(shù)為3.方差為2.8

【答案】C

【解析】

根據(jù)題意,舉出反例說明,即可得出正確選項(xiàng).

對(duì)于A, 當(dāng)擲骰子出現(xiàn)結(jié)果為時(shí),滿足平均數(shù)為3.中位數(shù)為2,可以出現(xiàn)點(diǎn)數(shù)6,所以A錯(cuò)誤;

對(duì)于B,當(dāng)擲骰子出現(xiàn)結(jié)果為時(shí),滿足中位數(shù)為3.眾數(shù)為2, 可以出現(xiàn)點(diǎn)數(shù)6,所以B錯(cuò)誤;

對(duì)于C,若平均數(shù)為2.且出現(xiàn)6點(diǎn),則方差,所以平均數(shù)為2.方差為2.4時(shí)一定沒有出現(xiàn)點(diǎn)數(shù)6,所以C正確;

對(duì)于D,當(dāng)當(dāng)擲骰子出現(xiàn)結(jié)果為時(shí),中位數(shù)為3,方差為,可以出現(xiàn)點(diǎn)數(shù)6,所以D錯(cuò)誤.

綜上可知,C為正確選項(xiàng).

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中所有正確的序號(hào)是____.

1,對(duì)應(yīng)是映射;

2)函數(shù)都是既奇又偶函數(shù);

3)已知對(duì)任意的非零實(shí)數(shù)都有,則

4)函數(shù)的定義域是,則函數(shù)的定義域?yàn)?/span>;

5)函數(shù)上都是增函數(shù),則函數(shù)上一定是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若函數(shù)有兩個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雞的產(chǎn)蛋量與雞舍的溫度有關(guān),為了確定下一個(gè)時(shí)段雞舍的控制溫度,某企業(yè)需要了解雞舍的溫度(單位:℃),對(duì)某種雞的時(shí)段產(chǎn)蛋量(單位: )和時(shí)段投入成本(單位:萬(wàn)元)的影響,為此,該企業(yè)收集了7個(gè)雞舍的時(shí)段控制溫度和產(chǎn)蛋量的數(shù)據(jù),對(duì)數(shù)據(jù)初步處理后得到了如圖所示的散點(diǎn)圖和表中的統(tǒng)計(jì)量的值.

17.40

82.30

3.6

140

9.7

2935.1

35.0

其中.

1)根據(jù)散點(diǎn)圖判斷, 哪一個(gè)更適宜作為該種雞的時(shí)段產(chǎn)蛋量關(guān)于雞舍時(shí)段控制溫度的回歸方程類型?(給判斷即可,不必說明理由)

2)若用作為回歸方程模型,根據(jù)表中數(shù)據(jù),建立關(guān)于的回歸方程;

3)已知時(shí)段投入成本的關(guān)系為,當(dāng)時(shí)段控制溫度為28℃時(shí),雞的時(shí)段產(chǎn)蛋量及時(shí)段投入成本的預(yù)報(bào)值分別是多少?

附:①對(duì)于一組具有有線性相關(guān)關(guān)系的數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為

0.08

0.47

2.72

20.09

1096.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,且經(jīng)過點(diǎn).

(1)求橢圓方程;

(2)過點(diǎn)的直線與橢圓交于兩個(gè)不同的點(diǎn),求線段的垂直平分線在軸截距的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的左、右焦點(diǎn)分別為, 軸,直線軸于點(diǎn),,為橢圓上的動(dòng)點(diǎn),的面積最大值為1.

(1)求橢圓的方程;

(2)如圖,過點(diǎn)作兩條直線與橢圓分別交于,且使軸,問四邊形的兩條對(duì)角線的交點(diǎn)是否為定點(diǎn)?若是,求出該定點(diǎn)的坐標(biāo);若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從一本英語(yǔ)書中隨機(jī)抽取100個(gè)句子,數(shù)出每個(gè)句子中的單詞數(shù),作出這100個(gè)數(shù)據(jù)的頻率分布表,由此你可以作出什么估計(jì)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),判斷的單調(diào)性,并用定義證明.

2)若對(duì)任意,不等式恒成立,求的取值范圍;

3)討論零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C: .

(1)若直線y軸上的截距為0且不與x軸重合,與圓C交于,試求直線:x軸上的截距;

(2)若斜率為1的直線與圓C交于D,E兩點(diǎn),求使面積的最大值及此時(shí)直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案