已知,其中為常數(shù).
(Ⅰ)當(dāng)函數(shù)的圖象在點處的切線的斜率為1時,求函數(shù)上的最小值;
(Ⅱ)若函數(shù)上既有極大值又有極小值,求實數(shù)的取值范圍;
(Ⅲ)在(Ⅰ)的條件下,過點作函數(shù)圖象的切線,試問這樣的切線有幾條?并求這些切線的方程.

(Ⅰ);(Ⅱ);(Ⅲ)

解析試題分析:(Ⅰ)首先求的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義列出方程解這個方程即可得的值,從而得函數(shù)的解析式,最后利用求閉區(qū)間上函數(shù)最值的一般步驟求上的最小值;
(Ⅱ)先求的導(dǎo)數(shù):,根據(jù)已知上有兩不相等的實數(shù)根,將問題轉(zhuǎn)化為一元二次方程上有兩不相等的實數(shù)根,最后利用根的判別式及韋達(dá)定理列不等式組解決問題;(Ⅲ)由已知不一定是切點,需先設(shè)切點根據(jù)導(dǎo)數(shù)的幾何意義,求函數(shù)在切點處的導(dǎo)函數(shù)值,再分(1)切點不與點重合;(2)切點與點重合,兩種情況求曲線的切線方程.
試題解析:(Ⅰ)由已知得解得           1分
           2分
的變化關(guān)系如下表:







 




 



                  

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是正實數(shù),設(shè)函數(shù)。
(Ⅰ)設(shè),求的單調(diào)區(qū)間;
(Ⅱ)若存在,使成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)處取得極值.
(Ⅰ)求的值;
(Ⅱ)證明:當(dāng)時,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).
(1)當(dāng)時,求函數(shù)的最大值;
(2)令其圖象上任意一點處切線的斜率恒成立,求實數(shù)的取值范圍;
(3)當(dāng),方程有唯一實數(shù)解,求正數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當(dāng)時,求函數(shù)上的最大值;
(2)令,若在區(qū)間上不單調(diào),求的取值范圍;
(3)當(dāng)時,函數(shù)的圖象與軸交于兩點,且,又的導(dǎo)函數(shù).若正常數(shù)滿足條件,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(I)求f(x)的單調(diào)區(qū)間;
(II)當(dāng)時,若存在使得對任意的恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)(≠0,∈R)
(Ⅰ)若,求函數(shù)的極值和單調(diào)區(qū)間;
(Ⅱ)若在區(qū)間(0,e]上至少存在一點,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù) 
(1)當(dāng)時,求函數(shù)的最大值;
(2)令)其圖象上任意一點處切線的斜率 恒成立,求實數(shù)的取值范圍;
(3)當(dāng),,方程有唯一實數(shù)解,求正數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)。
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)求證:當(dāng)時,對所有的都有成立.

查看答案和解析>>

同步練習(xí)冊答案