【題目】已知點滿足條件.

(Ⅰ)求點的軌跡的方程;

(Ⅱ)直線與圓 相切,與曲線相較于 兩點,若,求直線的斜率.

【答案】(Ⅰ);(Ⅱ)

【解析】試題分析:(Ⅰ)由可得點P的軌跡是以, 為焦點,長軸長為4的橢圓, 可得橢圓方程.

(Ⅱ)由直線l與圓O 相切,再由韋達定理表示,可得解.

試題解析:(Ⅰ) 滿足條件,

所以點P的軌跡是以, 為焦點,長軸長為4的橢圓,

, ,

因此所求點P的軌跡C的方程為

(Ⅱ)當軸時,l

代入曲線C的方程得,

不妨設(shè)

這時,

所以直線斜率存在.

設(shè),

直線l的方程為,

由直線l與圓O 相切

∵直線與曲線相交,

成立,

,

點晴:本題主要考查直線與圓錐曲線位置關(guān)系. 直線和圓錐曲線的位置關(guān)系一方面要體現(xiàn)方程思想,另一方面要結(jié)合已知條件,從圖形角度求解.聯(lián)立直線與圓錐曲線的方程得到方程組,化為一元二次方程后由根與系數(shù)的關(guān)系求解是一個常用的方法. 涉及弦長的問題中,應(yīng)熟練地利用根與系數(shù)關(guān)系、設(shè)而不求法計算弦長;涉及垂直關(guān)系時也往往利用根與系數(shù)關(guān)系、設(shè)而不求法簡化運算;涉及過焦點的弦的問題,可考慮用圓錐曲線的定義求解.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知直角梯形中, , , , ,如圖1所示,將沿折起到的位置,如圖2所示.

(1)當平面平面時,求三棱錐的體積;

(2)在圖2中, 的中點,若線段,且平面,求線段的長;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè){an}是由正數(shù)組成的等比數(shù)列,公比q=2,且a1a2a3…a30=230 , 那么a3a6a9…a30等于(
A.210
B.220
C.216
D.215

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)△ABC的內(nèi)角,A,B,C對邊的邊長分別為a,b,c,且acosB﹣bcosA= c.
(1)求 的值;
(2)求tan(A﹣B)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)ax21(a>0),g(x)x3bx.

(1)若曲線yf(x)與曲線yg(x)在它們的交點(1,c)處具有公共切線,ab的值;

(2)a3b=-9,若函數(shù)f(x)g(x)在區(qū)間[k,2]上的最大值為28,k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩點A(1,2),B(3,1)到直線l距離分別是 , ,則滿足條件的直線l共有( )條.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求的最小正周期;

(Ⅱ)若在區(qū)間上的最大值與最小值的和為2,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形為菱形, 相交于點, 平面, 平面, 中點.

(Ⅰ)求證: 平面;

(Ⅱ)求二面角的正弦值;

(Ⅲ)當直線與平面所成角為時,求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中石化集團獲得了某地深海油田塊的開采權(quán),集團在該地區(qū)隨機初步勘探了部分幾口井,取得了地質(zhì)資料,進入全面勘探時期后,集團按網(wǎng)絡(luò)點米布置井位進行全面勘探,由于勘探一口井的費用很高,如果新設(shè)計的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口斷井,以節(jié)約勘探費用,勘探初期數(shù)據(jù)資料見下表:

井號

坐標

鉆探深度

出油量

(1)號舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為,求,并估計的預報值;

(2)現(xiàn)準備勘探新井,若通過號并計算出的的值(精確到)與(1)中的值差不超過,則使用位置最接近的已有舊井,否則在新位置打開,請判斷可否使用舊井?

(參考公式和計算結(jié)果:

(3)設(shè)出油量與勘探深度的比值不低于20的勘探井稱為優(yōu)質(zhì)井,那么在原有口井中任意勘探口井,求勘探優(yōu)質(zhì)井數(shù)的分布列與數(shù)學期望.

查看答案和解析>>

同步練習冊答案