【題目】小明和父母都喜愛《中國好聲音》這欄節(jié)目,年月日晚在鳥巢進行中國好聲音終極決賽,四強選手分別為李榮浩戰(zhàn)隊的邢晗銘,那英戰(zhàn)隊的斯丹曼簇,王力宏戰(zhàn)隊的李芷婷,庾澄慶戰(zhàn)隊的陳其楠,決賽后四位選手相應(yīng)的名次為、、、,某網(wǎng)站為提升娛樂性,邀請網(wǎng)友在比賽結(jié)束前對選手名次進行預(yù)測.現(xiàn)用、、、表示某網(wǎng)友對實際名次為、、、的四位選手名次做出的一種等可能的預(yù)測排列,是該網(wǎng)友預(yù)測的名次與真實名次的偏離程度的一種描述.
(1)求的分布列及數(shù)學(xué)期望;
(2)按(1)中的結(jié)果,若小明家三人的排序號與真實名次的偏離程度都是,計算出現(xiàn)這種情況的概率(假定小明家每個人排序相互獨立).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年10月,工信部頒發(fā)了國內(nèi)首個無線電通信設(shè)備進網(wǎng)許可證,標(biāo)志著基站設(shè)備將正式接入公用電信商用網(wǎng)絡(luò).某手機生產(chǎn)商擬升級設(shè)備生產(chǎn)手機,有兩種方案可供選擇,方案1:直接引進手機生產(chǎn)設(shè)備;方案2:對已有的手機生產(chǎn)設(shè)備進行技術(shù)改造,升級到手機生產(chǎn)設(shè)備.該生產(chǎn)商對未來手機銷售市場行情及回報率進行大數(shù)據(jù)模擬,得到如下統(tǒng)計表:
市場銷售狀態(tài) | 暢銷 | 平銷 | 滯銷 | |
市場銷售狀態(tài)概率 | ||||
預(yù)期年利潤數(shù)值(單位:億元) | 方案1 | 70 | 40 | -40 |
方案2 | 60 | 30 | -10 |
(1)以預(yù)期年利潤的期望值為依據(jù),求的取值范圍,討論該生產(chǎn)商應(yīng)該選擇哪種方案進行設(shè)備升級?
(2)設(shè)該生產(chǎn)商升級設(shè)備后生產(chǎn)的
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三棱錐P﹣ABC中.AB⊥BC,△PAC為等邊三角形,二面角P﹣AC﹣B的余弦值為,當(dāng)三棱錐的體積最大時,其外接球的表面積為8π.則三棱錐體積的最大值為( )
A.1B.2C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=x2﹣2x+1的圖象與函數(shù)g(x)=3cosπx的圖象所有交點的橫坐標(biāo)之和等于( )
A.2B.4C.6D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD為菱形,∠ABC=60°,AA1AB,M,N分別為AB,AA1的中點.
(1)求證:平面B1NC⊥平面CMN;
(2)若AB=2,求點N到平面B1MC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某服裝加工廠為了提高市場競爭力,對其中一臺生產(chǎn)設(shè)備提出了甲、乙兩個改進方案:甲方案是引進一臺新的生產(chǎn)設(shè)備,需一次性投資1000萬元,年生產(chǎn)能力為30萬件;乙方案是將原來的設(shè)備進行升級改造,需一次性投入700萬元,年生產(chǎn)能力為20萬件.根據(jù)市場調(diào)查與預(yù)測,該產(chǎn)品的年銷售量的頻率分布直方圖如圖所示,無論是引進新生產(chǎn)設(shè)備還是改造原有的生產(chǎn)設(shè)備,設(shè)備的使用年限均為6年,該產(chǎn)品的銷售利潤為15元/件(不含一次性設(shè)備改進投資費用).
(1)根據(jù)年銷售量的頻率分布直方圖,估算年銷量的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)將年銷售量落入各組的頻率視為概率,各組的年銷售量用該組區(qū)間的中點值作年銷量的估計值,并假設(shè)每年的銷售量相互獨立.
①根據(jù)頻率分布直方圖估計年銷售利潤不低于270萬元的概率:
②若以該生產(chǎn)設(shè)備6年的凈利潤的期望值作為決策的依據(jù),試判斷該服裝廠應(yīng)選擇哪個方案.(6年的凈利潤=6年銷售利潤-設(shè)備改進投資費用)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)-2為自然對數(shù)的底數(shù),).
(1)若曲線在點處的切線與曲線至多有一個公共點時,求的取值范圍;
(2)當(dāng)時,若函數(shù)有兩個零點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線過點,傾斜角為.以原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程.
(1)寫出直線的參數(shù)方程及曲線的直角坐標(biāo)方程;
(2)若與相交于,兩點,為線段的中點,且,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長等于2正方形中,點Q是中點,點M,N分別在線段上移動(M不與A,B重合,N不與C,D重合),且,沿著將四邊形折起,使得面面,則三棱錐體積的最大值為________;當(dāng)三棱錐體積最大時,其外接球的表面積為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com