..(本題滿分16分)本題共有3個(gè)小題,第1小題滿分5分,第2小題滿分5分,第3小題滿分6分.
已知橢圓上有一個(gè)頂點(diǎn)到兩個(gè)焦點(diǎn)之間的距離分別為,
(1)求橢圓的方程;
(2)如果直線與橢圓相交于,若,證明直線與直線的交點(diǎn)必在一條確定的雙曲線上;
(3)過(guò)點(diǎn)作直線(與軸不垂直)與橢圓交于兩點(diǎn),與軸交于點(diǎn),若,,證明:為定值。
解:(1)由已知
………………………3分
所以橢圓方程為!5分
(2)依題意可設(shè),且有

,將代入即得
所以直線與直線的交點(diǎn)必在雙曲線上!10分
(3)依題意,直線的斜率存在,故可設(shè)直線的方程為,……………11分
設(shè)、、,則兩點(diǎn)坐標(biāo)滿足方程組
消去并整理,得,
所以, ①   , ② ……………………13分
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202757033735.png" style="vertical-align:middle;" />,所以,
所以,又軸不垂直,所以,
所以,同理。       …………………………14分
所以。
將①②代入上式可得。     …………………………16分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓C:,為橢圓C的兩焦點(diǎn),P為橢圓C上一點(diǎn),連接
延長(zhǎng)交橢圓于另外一點(diǎn)Q,則⊿的周長(zhǎng)_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分15分) 已知拋物線的頂點(diǎn)是橢圓的中心,焦點(diǎn)與該橢圓的右焦點(diǎn)重合.
(1)求拋物線的方程;
(2)已知?jiǎng)又本過(guò)點(diǎn),交拋物線兩點(diǎn).
若直線的斜率為1,求的長(zhǎng);
是否存在垂直于軸的直線被以為直徑的圓所截得的弦長(zhǎng)恒為定值?如果存在,求出的方程;如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓中心在原點(diǎn),且經(jīng)過(guò)定點(diǎn),其一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,則該橢圓的方程為          

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分15分)如圖,點(diǎn)為圓形紙片內(nèi)不同于圓心的定點(diǎn),動(dòng)點(diǎn)在圓周上,將紙片折起,使點(diǎn)與點(diǎn)重合,設(shè)折痕交線段于點(diǎn).現(xiàn)將圓形紙片放在平面直角坐標(biāo)系中,設(shè)圓,記點(diǎn)的軌跡為曲線.
⑴證明曲線是橢圓,并寫(xiě)出當(dāng)時(shí)該橢圓的標(biāo)準(zhǔn)方程;
⑵設(shè)直線過(guò)點(diǎn)和橢圓的上頂點(diǎn),點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為點(diǎn),若橢圓的離心率,求點(diǎn)的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
設(shè)上的兩點(diǎn),
滿足,橢圓的離心率短軸長(zhǎng)為2,0為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)試問(wèn):△AOB的面積是否為定值?如果是,請(qǐng)給予證明;如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在雙曲線中,,且雙曲線與橢圓有公共焦點(diǎn),則雙曲線的方程是(         )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓的長(zhǎng)軸長(zhǎng)為4,離心率為,分別為其左右焦點(diǎn).一動(dòng)圓過(guò)點(diǎn),且與直線相切.
(Ⅰ)(。┣髾E圓的方程; (ⅱ)求動(dòng)圓圓心軌跡的方程;
(Ⅱ) 在曲線上有兩點(diǎn),橢圓上有兩點(diǎn),滿足共線,共線,且,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓,右焦點(diǎn)為,是橢圓上三個(gè)不同的點(diǎn),則“成等差數(shù)列”是“”的( )
A.充要條件B.必要不充分條件
C.充分不必要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案