分析 (1)先求f(x)的導(dǎo)數(shù)f'(x),再求f(0),由題意知f(0)=1,f'(0)=0,從而求出b,c的值;
(2)求導(dǎo)數(shù),利用f(a)=0,即可求出實數(shù)a的值.
解答 解:(1)因為函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{a}{2}$x2+bx+c,所以導(dǎo)數(shù)f'(x)=x2-ax+b,
又因為曲線y=f(x)在點P(0,f(0))處的切線方程為y=1,
所以f(0)=1,f'(0)=0,即b=0,c=1.
(2)由(1),得f'(x)=x2-ax=x(x-a)(a>0)
由f'(x)=0得x=0或x=a,
∵函數(shù)f(x)有且只有兩個不同的零點,
所以f(0)=0或f(a)=0,
∵f(0)=1,
∴f(a)=$\frac{1}{3}$a3-$\frac{1}{2}{a}^{3}$+1=0,
∴a=$\root{3}{6}$.
點評 本題主要考查導(dǎo)數(shù)的概念及應(yīng)用:求極值,解題中必須注意過某點的切線與在某點處的切線的區(qū)別,本題就是一個很好的例子,同時考查了字母的運算能力,是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,1) | B. | (-∞,-1)∪(1,+∞) | C. | (1,+∞) | D. | (-∞,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 相交 | B. | 相離 | C. | 相切 | D. | 無法確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 焦點在x軸上的橢圓 | B. | 焦點在y軸上的橢圓 | ||
C. | 過原點的直線 | D. | 圓心在原點的圓 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\frac{2}{3}$ | C. | 4 | D. | $\frac{4}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com