14.已知命題p:“?x0∈R,使得x${\;}_{0}^{2}$+2ax0+1<0成立”為真命題,則實(shí)數(shù)a滿足(  )
A.[-1,1)B.(-∞,-1)∪(1,+∞)C.(1,+∞)D.(-∞,-1)

分析 若命題p:“?x0∈R,使得x${\;}_{0}^{2}$+2ax0+1<0成立”為真命題,則△=4a2-4>0,解得答案.

解答 解:若命題p:“?x0∈R,使得x${\;}_{0}^{2}$+2ax0+1<0成立”為真命題,
則△=4a2-4>0,
解得:a∈(-∞,-1)∪(1,+∞),
故選:B

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是存在性問題,二次函數(shù)的圖象和性質(zhì),難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(1)圖中的圖象所表示的函數(shù)的解析式;
(2)△AOB為邊長(zhǎng)為2的等邊三角形,設(shè)直線x=t截這個(gè)三角形所得的位于直線左方的圖形面積為S,求S=f(t)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)$f(x)=sin({5x+\frac{π}{6}})$,x∈R.的初相為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.以N(1,3)為圓心,并且與直線3x-4y-7=0相切的圓的標(biāo)準(zhǔn)方程為${(x-1)^2}+{(y-3)^2}=\frac{256}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若傾斜角為$\frac{π}{6}$的直線過橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,(a>b>0)$的左焦點(diǎn)F且交橢圓于A,B兩點(diǎn),若|AF|=3|BF|,則橢圓的離心率為$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.解下列不等式
(1)x2+x-2≤0
(2)$\frac{x-1}{(x-2)(x-3)}≥0$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知等腰梯形ABCD中,AB∥DC,∠A=∠B=60°,等腰梯形ABCD外接圓的半徑為1,則這個(gè)梯形面積S的取值范圍(0,$\frac{3}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.直線l:2x+y-1=0,若直線m過點(diǎn)(3,2)且m⊥l,則直線m的方程為x-2y+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{a}{2}$x2+bx+c(a>0),曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=1
(1)求b,c的值;
(2)若函數(shù)f(x)有且只有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案