5.有三個命題:
(1)“若x+y=0,則x,y互為相反數(shù)”的逆命題;
(2)“若a>b,則a2>b2”的逆否命題;
(3)“若x≤-3,則x2+x-6>0”的否命題.
其中真命題為(1)(填序號).

分析 寫出逆命題,判斷真假,判斷(1)的正誤;寫出逆否命題,判斷真假(2)的正誤;寫出否命題判斷真假判斷(3)的正誤;

解答 解:對于(1)“若x+y=0,則x,y互為相反數(shù)”的逆命題:x,y互為相反數(shù),則x+y=0,顯然正確;
對于(2)“若a>b,則a2>b2”的逆否命題:若a2≤b2,則a≤b,應(yīng)該是|a|≤|b|,所以(2)不正確;
對于(3)“若x≤-3,則x2+x-6>0”的否命題:若x>-3,則x2+x-6≤0,不正確.
故答案為:(1).

點評 本題考查命題的真假的判斷與應(yīng)用,注意四種命題的逆否關(guān)系,基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.對于函數(shù)f(x),若在其定義域內(nèi)存在兩個實數(shù)a,b(a<b),當(dāng)x∈[a,b]時,f(x)的值域也是[a,b],則稱函數(shù)f(x)為“Kobe函數(shù)”.若函數(shù)f(x)=k+$\sqrt{x-1}$是“Kobe函數(shù)”,則實數(shù)k的取值范圍是( 。
A.[-1,0]B.[1,+∞)C.$[{-1,-\frac{3}{4}})$D.$({\frac{3}{4},1}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知$θ∈(\frac{π}{2},π),sinθ=\frac{4}{5}$,則cosθ=$-\frac{3}{5}$;$sin(θ+\frac{π}{3})$=$\frac{{4-3\sqrt{3}}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)是定義在R上的偶函數(shù),且在(-∞,0]上單調(diào)遞減,若f(-1)=0,則不等式f(2x-1)>0解集為( B  )( 。
A.(-6,0)∪(1,3)B.(-∞,0)∪(1,+∞)C.(-∞,1)∪(3,+∞)D.(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若關(guān)于x的不等式|x-1|+|x-2|>log4a2恒成立,則實數(shù)a的取值范圍為( 。
A.(-2,2)B.(-∞,-2)C.(2,﹢∞)D.(-2,0)∪(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知以點C(t,$\frac{2}{t}$)(t∈R且t≠0)為圓心的圓經(jīng)過原點O,且與x軸交于點A,與y軸交于點B.
(1)求證:△AOB的面積為定值.
(2)設(shè)直線2x+y-4=0與圓C交于點M,N,若|OM|=|ON|,求圓C的方程.
(3)在(2)的條件下,設(shè)P,Q分別是直線l:x+y+2=0和圓C上的動點,求|PB|+|PQ|的最小值及此時點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知三棱錐P-ABC的體積為10,其三視圖如圖所示,則這個三棱錐最長的一條側(cè)棱長等于$\sqrt{34}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=sinx+cosx,g(x)=sinx-cosx,其中x∈(0,π).
(1)若$f(θ)=\frac{1}{5}$,求tanθ的值;
(2)若$\frac{f(θ)}{g(θ)}=\frac{1}{5}$,求tanθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知α∈(0,π),且cosα=-$\frac{3}{5}$,則tanα=$-\frac{4}{3}$.

查看答案和解析>>

同步練習(xí)冊答案