20.若關(guān)于x的不等式|x-1|+|x-2|>log4a2恒成立,則實(shí)數(shù)a的取值范圍為( 。
A.(-2,2)B.(-∞,-2)C.(2,﹢∞)D.(-2,0)∪(0,2)

分析 若不等式|x-1|+|x-2|>k恒成立,只需 k小于|x-1|+|x-2|的最小值即可.由絕對(duì)值的幾何意義,求出|x-1|+|x-2|取得最小值1,得1>log4a2求出a的范圍.

解答 解:若不等式|x-1|+|x-2|>log4a2恒成立,
只需log4a2小于等于|x-1|+|x-2|的最小值即可.
由絕對(duì)值的幾何意義,|x-1|+|x-2|表示在數(shù)軸上點(diǎn)x到1,2點(diǎn)的距離之和.
當(dāng)點(diǎn)x在1,2點(diǎn)之間時(shí)(包括1,2點(diǎn)),即1≤x≤2時(shí),|x-1|+|x-2|取得最小值1,
∴1>log4a2
所以a2<4,a≠0,解得a∈(-2,0)∪(0,2).
故選:D.

點(diǎn)評(píng) 本題考查不等式恒成立問(wèn)題,本題中注意到|x-1|+|x-2|有明顯的幾何意義,即絕對(duì)值的幾何意義,數(shù)形結(jié)合使問(wèn)題輕松獲解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.過(guò)點(diǎn)(-1,3)且與直線x-2y+3=0平行的直線方程為( 。
A.x-2y+7=0B.2x+y-1=0C.f(x)D.f(5x)>f(3x+4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.若在定義域內(nèi)存在實(shí)數(shù)x0使得f(x0+1)=f(x0)+f(1)成立則稱(chēng)函數(shù)f(x)有“溜點(diǎn)x0
(1)若函數(shù)$f(x)={(\frac{1}{2})^x}+m{x^2}$在(0,1)上有“溜點(diǎn)”,求實(shí)數(shù)m的取值范圍;
(2)若函數(shù)f(x)=lg($\frac{a}{{x}^{2}+1}$)在(0,1)上有“溜點(diǎn)”,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知a、b滿足b=-$\frac{1}{2}{a^2}$+3lna(a>0),點(diǎn)Q(m、n)在直線y=2x+$\frac{1}{2}$上,則(a-m)2+(b-n)2最小值為$\frac{9}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.集合A=(2,3],B=(1,3),C=[m,+∞),全集為R.
(1)求(∁RA)∩B;
(2)若(A∪B)∩C≠∅,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.有三個(gè)命題:
(1)“若x+y=0,則x,y互為相反數(shù)”的逆命題;
(2)“若a>b,則a2>b2”的逆否命題;
(3)“若x≤-3,則x2+x-6>0”的否命題.
其中真命題為(1)(填序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知x與y之間的一組數(shù)據(jù):
x01234
y13579
則y與x的線性回歸方程=x+必過(guò)點(diǎn)(2,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知a=sin21°,b=cos72°,c=tan23°,則a,b,c的大小關(guān)系是( 。
A.a>b>cB.b>a>cC.c>b>aD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.函數(shù)y=asinx-bcosx滿足f($\frac{2π}{3}$-x)=f(x),那么$\frac{a}$=( 。
A.$\sqrt{3}$B.1C.-$\sqrt{3}$D.-1

查看答案和解析>>

同步練習(xí)冊(cè)答案