甲乙兩人分別獨立參加某高校自主招生面試,若甲、乙能通過面試的概率都是,則面試結(jié)束后通過的人數(shù)X的數(shù)學期望是(  )
A.B.C.1D.
A
依題意,X的取值為0,1,2,
且P(X=0)=(1-)×(1-)=
P(X=1)=×(1-)+(1-,
P(X=2)=×
故X的數(shù)學期望E(X)=0×+1×+2×,故選A.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

某種玫瑰花,進貨商當天以每支1元從鮮花批發(fā)商店購進,以每支2元售出.若當天賣不完,剩余的玫瑰花批發(fā)商店以每支0.5元的價格回收.根據(jù)市場統(tǒng)計,得到這個季節(jié)的日銷售量X(單位:支)的頻率分布直方圖(如圖所示),將頻率視為概率.(12分)
 
(1)求頻率分布直方圖中的值;
(2)若進貨量為(單位支),當n≥X時,求利潤Y的表達式;
(3)若當天進貨量n=400,求利潤Y的分布列和數(shù)學期望E(Y)(統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)有甲、乙兩門火炮,它們的彈著點與目標之間的距離為隨機變量X1和X2(單位:cm),其分布列為:


求EX1,EX2,DX1,DX2,并分析兩門火炮的優(yōu)劣.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

深圳市某校中學生籃球隊假期集訓(xùn),集訓(xùn)前共有6個籃球,其中3個是新球(即沒有用過的球),3個是舊球(即至少用過一次的球).每次訓(xùn)練,都從中任意取出2個球,用完后放回.
(1)設(shè)第一次訓(xùn)練時取到的新球個數(shù)為ξ,求ξ的分布列和數(shù)學期望;
(2)求第二次訓(xùn)練時恰好取到一個新球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

[2013·廈門質(zhì)檢]有一批產(chǎn)品,其中有12件正品和4件次品,有放回地任取3件,若X表示取到次品的次數(shù),則D(X)=________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

袋中有3個黑球,1個紅球.從中任取2個,取到一個黑球得0分,取到一個紅球得2分,則所得分數(shù)ξ的數(shù)學期望E(ξ)=________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,將一個各面都涂了油漆的正方體,切割成125個同樣大小的小正方體.經(jīng)過攪拌后,從中隨機取出一個小正方體,記它的涂油漆面數(shù)為X,則X的均值為E(X)=________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

甲、乙兩人各進行3次射擊,甲每次擊中目標的概率為,乙每次擊中目標的概率為.
(1)求乙至多擊中目標2次的概率;
(2)記甲擊中目標的次數(shù)為Z,求Z的分布列、數(shù)學期望和標準差.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

兩封信隨機投入三個空郵箱,則郵箱的信件數(shù)的數(shù)學期望_____。

查看答案和解析>>

同步練習冊答案