11.a(chǎn)、b均為實數(shù),則a<b<0是a2>b2的(  )
A.必要不充分條件B.充分不必要條件
C.充要條件D.既不充分也不必要條件

分析 a<b<0⇒a2>b2,反之不成立,例如取a=3,b=2.即可判斷出結(jié)論.

解答 解:a<b<0⇒a2>b2,反之不成立,例如取a=3,b=2.
∴a<b<0是a2>b2的充分不必要條件.
故選:B.

點評 本題考查了不等式的性質(zhì)、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知向量$\overrightarrow{a}$,$\overrightarrow$的夾角為120°,|$\overrightarrow{a}$|=1,|$\overrightarrow$|=5.
(1)求$\overrightarrow{a}$•$\overrightarrow$;
(2)求|3$\overrightarrow{a}$-$\overrightarrow$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知f(x)=ax-blnx,曲線y=f(x)在點(1,f(1))處的切線方程為y=x+1.
(1)求函數(shù)f(x)單調(diào)區(qū)間;
(2)對任意x≥1,f(x)≥kx恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如圖一個水平放置的無蓋透明的正方體容器,高12cm,將一個球放在容器口,在向容器內(nèi)注水,當球面恰好接觸水面時測得水深為8cm,如果不計容器厚度,則球的體積為$\frac{2197π}{6}$cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.為了了解參加運動會的2 000名運動員的年齡情況,從中抽取20名運動員的年齡進行統(tǒng)計分析.就這個問題,下列說法中正確的有④⑥.
①2 000名運動員是總體;
②每個運動員是個體;
③所抽取的20名運動員是一個樣本;
④樣本容量為20;
⑤這個抽樣方法可采用隨機數(shù)表法抽樣;
⑥每個運動員被抽到的機會相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知橢圓的方程為$\frac{x^2}{6}+\frac{y^2}{2}=1$,A是其右頂點,B是該橢圓在第一象限部分上的一點,且$∠AOB=\frac{π}{4}$,若點C是橢圓上的動點,則$\overrightarrow{OA}•\overrightarrow{BC}$的取值范圍為( 。
A.[-3,3]B.[-9,3]C.$[-2-\sqrt{3}\;,\;2-\sqrt{3}]$D.$[-3\sqrt{3}\;,\;3]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在四棱錐P-ABCD中,AD∥BC,AB⊥AD,PA⊥平面ABCD,點E在BC上,BC=2AB=2AD=4BE.
(1)求證:平面PED⊥平面PAC;
(2)若直線PE與平面PAC所成的角的正弦值為$\frac{{\sqrt{5}}}{5}$,求二面角A-PC-D的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=|x-2|,g(x)=|x+1|-x.
(1)解不等式f(x)>g(x);
(2)若存在實數(shù)x,使不等式m-g(x)≥f(x)+x(m∈R)能成立,求實數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)點P為有公共焦點F1、F2的橢圓M和雙曲線Γ的一個交點,$cos∠{F_1}P{F_2}=\frac{4}{5}$,橢圓M的離心率為e1,雙曲線Γ的離心率為e2.若e2=2e1,則e1=$\frac{{\sqrt{130}}}{20}$.

查看答案和解析>>

同步練習(xí)冊答案