設(shè)變量x,y滿足約束條件,則目標(biāo)函數(shù)z=4x+2y的最大值為   
【答案】分析:先畫出約束條件 ,的可行域,再求出可行域中各角點(diǎn)的坐標(biāo),將各點(diǎn)坐標(biāo)代入目標(biāo)函數(shù)的解析式,分析后易得目標(biāo)函數(shù)z=4x+2y的最大值.
解答:解:由約束條件,得如圖所示的三角形區(qū)域,
三個(gè)頂點(diǎn)坐標(biāo)為A(2,1),B(1,2),C(0,1)
將三個(gè)代入得z的值分別為10,8,2
直線z=4x+2y過點(diǎn)A (2,1)時(shí),z取得最大值為10;
故答案為:10.
點(diǎn)評(píng):在解決線性規(guī)劃的小題時(shí),我們常用“角點(diǎn)法”,其步驟為:①由約束條件畫出可行域⇒②求出可行域各個(gè)角點(diǎn)的坐標(biāo)⇒③將坐標(biāo)逐一代入目標(biāo)函數(shù)⇒④驗(yàn)證,求出最優(yōu)解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)變量x,y滿足約束條件
y≤2
3
x-3y≤0
x+
3
y-2
3
≥0
,則目標(biāo)函數(shù)u=x2+y2的最大值M與最小值N的比
M
N
=( 。
A、
4
3
3
B、
16
3
3
C、
4
3
D、
16
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)變量x,y滿足約束條件
x+y≥2
x≤1
y≤2
,則目標(biāo)函數(shù)z=-x+y的最大值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•河西區(qū)一模)設(shè)變量x、y滿足約束條件
y≥0
x-y+1≥0
x+y-3≤0
,則z=2x+y的最大值為
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理科)設(shè)變量x,y滿足約束條件
2x-y≤0
x-3y+5≥0
x≥0
,則目標(biāo)函數(shù)z=x-y的最大值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•江西模擬)設(shè)變量x,y滿足約束條件
x+1≥0
x-y+1≤0
x+y-2≤0
,則z=4x+y的最大值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案