分析 由題意:f(x)是一次函數(shù),設(shè)出f(x)的解析式,滿足3f(x+1)-2f(x-1)=2x+10,利用待定系數(shù)法求解.
解答 解:由題意:f(x)是一次函數(shù),設(shè)f(x)=kx+b(k≠0),
∵3f(x+1)-2f(x-1)=2x+10,
可得:3(kx+k+b)-2(kx-k+b)=2x+10.
化簡(jiǎn):kx+5k+b=2x+10.
解得:k=2,b=0.
所以一次函數(shù)f(x)的解析式為:f(x)=2x.
點(diǎn)評(píng) 本題主要考查了解析式的求法,利用了待定系數(shù)法求解.屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | N⊆M | B. | N∩M=∅ | C. | M⊆N | D. | N∪M=R |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overline{{x}_{1}}$<$\overline{{x}_{2}}$,s1>s2 | B. | $\overline{{x}_{1}}$<$\overline{{x}_{2}}$,s1<s2 | C. | $\overline{{x}_{1}}$>$\overline{{x}_{2}}$,s1<s2 | D. | $\overline{{x}_{1}}$>$\overline{{x}_{2}}$,s1>s2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0,1} | B. | {1} | C. | {1,2} | D. | {0,1,2} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com