圓O1和圓O2的極坐標(biāo)方程分別為ρ=4cosθ,ρ=-4sinθ.
(1)把圓O1和圓O2的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)求經(jīng)過(guò)圓O1、圓O2交點(diǎn)的直線的直角坐標(biāo)方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直角坐標(biāo)系中,已知點(diǎn),曲線的參數(shù)方程為為參數(shù)).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為
(Ⅰ)判斷點(diǎn)與直線的位置關(guān)系,說(shuō)明理由;
(Ⅱ)設(shè)直線與曲線的兩個(gè)交點(diǎn)為、,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在極坐標(biāo)系中,圓C的方程為ρ=2sin,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的方程為y=2x+1,判斷直線l和圓C的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系xOy中,設(shè)動(dòng)點(diǎn)P,Q都在曲線C:(θ為參數(shù))上,且這兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為θ=α與θ=2α(0<α<2π),設(shè)PQ的中點(diǎn)M與定點(diǎn)A(1,0)間的距離為d,求d的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與直角坐標(biāo)系中軸的正半軸重合,且兩坐標(biāo)系有相同的長(zhǎng)度單位,圓C的參數(shù)方程為(為參數(shù)),點(diǎn)Q的極坐標(biāo)為。
(1)化圓C的參數(shù)方程為極坐標(biāo)方程;
(2)直線過(guò)點(diǎn)Q且與圓C交于M,N兩點(diǎn),求當(dāng)弦MN的長(zhǎng)度為最小時(shí),直線 的直角坐標(biāo)方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直線的參數(shù)方程為,(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為.
(1)把圓C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)將直線向右平移h個(gè)單位,所得直線與圓C相切,求h.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,曲線、相交于、兩點(diǎn). ()
(Ⅰ)求、兩點(diǎn)的極坐標(biāo);
(Ⅱ)曲線與直線(為參數(shù))分別相交于兩點(diǎn),求線段的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在極坐標(biāo)系中,曲線C1:ρ(cosθ+sinθ)=1與曲線C2:ρ=a(a>0)的一個(gè)交點(diǎn)在極軸上,求a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com