分析 利用任意角的三角函數(shù)的定義、同角三角函數(shù)的基本關(guān)系,求得α、β的正弦值和余弦值,利用二倍角公式求得2α的正弦和余弦值,再利用兩角和的余弦公式求得cos(2α+β)的值,可得2α+β的值.
解答 解:由題意可得,A的縱坐標(biāo)為$\frac{2\sqrt{5}}{5}$,B的橫坐標(biāo)為$\frac{7\sqrt{2}}{10}$,
cosα=$\frac{\sqrt{5}}{5}$,sinα=$\frac{2\sqrt{5}}{5}$,cosβ=$\frac{7\sqrt{2}}{10}$,sinβ=$\frac{\sqrt{2}}{10}$,
可得α∈($\frac{π}{4}$,$\frac{π}{2}$),β∈(0,$\frac{π}{6}$),∴2α+β∈($\frac{π}{2}$,$\frac{7π}{6}$).
∵cos2α=2cos2α-1=-$\frac{3}{5}$,∴sin2α=$\sqrt{{1-cos}^{2}2α}$=$\frac{4}{5}$,
∴cos(2α+β)=cos2αcosβ-sin2αsinβ=-$\frac{3}{5}•\frac{7\sqrt{2}}{10}$-$\frac{4}{5}•\frac{\sqrt{2}}{10}$=-$\frac{\sqrt{2}}{2}$,
∴2α+β=$\frac{3π}{4}$,
故答案為:$\frac{3π}{4}$.
點(diǎn)評(píng) 本題主要考查任意角的三角函數(shù)的定義,同角三角函數(shù)的基本關(guān)系,二倍角公式、兩角和的余弦公式的應(yīng)用,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2.2米 | B. | 4.4米 | C. | 2.4米 | D. | 4米 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | α>β>γ | B. | β>α>γ | C. | γ>α>β | D. | β>γ>α |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com