6.函數(shù)f(x)=cos4x•cos2x•cosx•sinx的最大值和最小正周期依次為 (  )
A.$\frac{1}{8};\frac{π}{4}$B.$\frac{1}{4};\frac{π}{2}$C.$\frac{1}{2};π$D.1;2π

分析 利用二倍角化簡(jiǎn)函數(shù)f(x),根據(jù)正弦函數(shù)的圖象與性質(zhì)求出f(x)的最大值與最小正周期.

解答 解:函數(shù)f(x)=cos4x•cos2x•cosx•sinx
=$\frac{1}{2}$cos4x•cos2x•sin2x
=$\frac{1}{4}$cos4x•sin4x
=$\frac{1}{8}$sin8x,
根據(jù)正弦函數(shù)的圖象與性質(zhì),得
f(x)的最大值是$\frac{1}{8}$,
最小正周期為T(mén)=$\frac{2π}{ω}$=$\frac{2π}{8}$=$\frac{π}{4}$.
故選:A.

點(diǎn)評(píng) 本題考查了二倍角公式與正弦函數(shù)的圖象和性質(zhì)的應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=|x+1|-|x|+a.
(1)若不等式f(x)≥0的解集為空集,求實(shí)數(shù)a的取值范圍;
(2)若方程f(x)=x有三個(gè)不同的解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,三棱柱ABC-A1B1C1中,側(cè)面BB1C1C為菱形,AC=AB1
(1)證明:AB⊥B1C;
(2)若∠CAB1=90°,∠CBB1=60°,AB=BC,求二面角A-A1B1-C1的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知?jiǎng)狱c(diǎn)P(x,y)滿足$\sqrt{{x}^{2}+(y+3)^{2}}$+$\sqrt{{x}^{2}+(y-3)^{2}}$=6,則動(dòng)點(diǎn)P的軌跡是( 。
A.雙曲線B.線段C.拋物線D.橢圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在△ABC中,a,b,c分別為∠A、∠B、∠C、的對(duì)邊,若a+c=2b,且$sinB=\frac{4}{5}$,當(dāng)△ABC的面積為$\frac{3}{2}$時(shí),則b=(  )
A.$\frac{{1+\sqrt{3}}}{2}$B.2C.4D.2+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=1-$\frac{2}{{1+{2^x}}}$的定義域?yàn)镽.
(1)判斷函數(shù)的奇偶性并證明.
(2)若對(duì)任意的x∈R,不等式f(x2-2x)+f(t-x)>0恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.用兩種語(yǔ)句寫(xiě)出求1 2+2 2+…+100 2的值的算法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知△ABC外接圓直徑為$\frac{4\sqrt{3}}{3}$,角A,B,C所對(duì)的邊分別為a,b,c,C=60°.
(1)求$\frac{a+b+c}{sinA+sinB+sinC}$的值;
(2)若a+b=ab,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知傾斜角為α的直線l與直線x+2y-4=0垂直,則$cos(\frac{2017}{2}π-2α)$的值為(  )
A.2B.$-\frac{1}{2}$C.$\frac{4}{5}$D.$-\frac{4}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案