【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到200輛/千米時,造成堵塞,此時車流速度為0;當(dāng)車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當(dāng)20≤x≤200時,車流速度v是車流密度x的一次函數(shù).
(1)當(dāng)0≤x≤200時,求函數(shù)v(x)的表達(dá)式;
(2)當(dāng)車流密度x為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)f(x)=xv(x)可以達(dá)到最大,并求出最大值.(精確到1輛/小時).
【答案】(1)
(2)3333輛/小時
【解析】
(1)由題意:當(dāng)0≤x≤20時,v(x)=60;當(dāng)20<x≤200時,設(shè)v(x)=ax+b
再由已知得,解得
故函數(shù)v(x)的表達(dá)式為
(2)依題并由(1)可得
當(dāng)0≤x<20時,f(x)為增函數(shù),故當(dāng)x=20時,其最大值為60×20=1200
當(dāng)20≤x≤200時,
當(dāng)且僅當(dāng)x=200﹣x,即x=100時,等號成立.
所以,當(dāng)x=100時,f(x)在區(qū)間(20,200]上取得最大值.
綜上所述,當(dāng)x=100時,f(x)在區(qū)間[0,200]上取得最大值為,
即當(dāng)車流密度為100輛/千米時,車流量可以達(dá)到最大值,最大值約為3333輛/小時.
答:(1)函數(shù)v(x)的表達(dá)式
(2)當(dāng)車流密度為100輛/千米時,車流量可以達(dá)到最大值,最大值約為3333輛/小時.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(, ).
(1)若的圖象在點處的切線方程為,求在區(qū)間上的最大值和最小值;
(2)若在區(qū)間上不是單調(diào)函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正四面體ABCD的頂點C在平面α內(nèi),且直線BC與平面α所成角為15°,頂點B在平面α上的射影為點O,當(dāng)頂點A與點O的距離最大時,直線CD與平面α所成角的正弦值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為的函數(shù)是奇函數(shù).
(1)求實數(shù)的值; (2)判斷并證明在上的單調(diào)性;
(3)若對任意實數(shù),不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且定義域為.
(1)求關(guān)于的方程在上的解;
(2)若在區(qū)間上單調(diào)減函數(shù),求實數(shù)的取值范圍;
(3)若關(guān)于的方程在上有兩個不同的實根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若直線l1:y=x,l2:y=x+2與圓C:x2+y2﹣2mx﹣2ny=0的四個交點把圓C分成的四條弧長相等,則m=( )
A.0或1
B.0或﹣1
C.1或﹣1
D.0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com