【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到200/千米時,造成堵塞,此時車流速度為0;當(dāng)車流密度不超過20/千米時,車流速度為60千米/小時,研究表明:當(dāng)20≤x≤200時,車流速度v是車流密度x的一次函數(shù).

1)當(dāng)0≤x≤200時,求函數(shù)vx)的表達(dá)式;

2)當(dāng)車流密度x為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)fx=xvx)可以達(dá)到最大,并求出最大值.(精確到1/小時).

【答案】1

23333/小時

【解析】

1)由題意:當(dāng)0≤x≤20時,vx=60;當(dāng)20x≤200時,設(shè)vx=ax+b

再由已知得,解得

故函數(shù)vx)的表達(dá)式為

2)依題并由(1)可得

當(dāng)0≤x20時,fx)為增函數(shù),故當(dāng)x=20時,其最大值為60×20=1200

當(dāng)20≤x≤200時,

當(dāng)且僅當(dāng)x=200﹣x,即x=100時,等號成立.

所以,當(dāng)x=100時,fx)在區(qū)間(20200]上取得最大值

綜上所述,當(dāng)x=100時,fx)在區(qū)間[0200]上取得最大值為,

即當(dāng)車流密度為100/千米時,車流量可以達(dá)到最大值,最大值約為3333/小時.

答:(1)函數(shù)vx)的表達(dá)式

2)當(dāng)車流密度為100/千米時,車流量可以達(dá)到最大值,最大值約為3333/小時.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

1)若的圖象在點處的切線方程為,求在區(qū)間上的最大值和最小值;

2)若在區(qū)間上不是單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正四面體ABCD的頂點C在平面α內(nèi),且直線BC與平面α所成角為15°,頂點B在平面α上的射影為點O,當(dāng)頂點A與點O的距離最大時,直線CD與平面α所成角的正弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在各棱長均為4的直四棱柱,底面為菱形, , 為棱上一點,.

1求證:平面平面;

2求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】點A、B、C是拋物線y2=4x上不同的三點,若點F(1,0)滿足 ,則△ABF面積的最大值為(
A.
B.
C.
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域為的函數(shù)是奇函數(shù).

1)求實數(shù)的值;2)判斷并證明上的單調(diào)性;

3)若對任意實數(shù),不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且定義域為.

(1)求關(guān)于的方程上的解;

(2)若在區(qū)間上單調(diào)減函數(shù),求實數(shù)的取值范圍;

(3)若關(guān)于的方程上有兩個不同的實根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,中點.

(1)求點到平面的距離;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若直線l1:y=x,l2:y=x+2與圓C:x2+y2﹣2mx﹣2ny=0的四個交點把圓C分成的四條弧長相等,則m=(
A.0或1
B.0或﹣1
C.1或﹣1
D.0

查看答案和解析>>

同步練習(xí)冊答案