6.圓心為(1,2)且過原點(diǎn)的圓的方程是(  )
A.(x-1)2+(y-2)2=5B.(x+1)2+(y+2)2=5C.(x-1)2+(y-2)2=3D.(x+1)2+(y+2)2=3

分析 由題意結(jié)合兩點(diǎn)間的距離公式求出圓的半徑,代入圓的標(biāo)準(zhǔn)方程得答案.

解答 解:由題意可得圓的半徑r=$\sqrt{{1}^{2}+{2}^{2}}=\sqrt{5}$,
又圓心為(1,2),可得圓的標(biāo)準(zhǔn)方程為(x-1)2+(y-2)2=5.
故選:A.

點(diǎn)評 本題考查圓的標(biāo)準(zhǔn)方程,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.橫梁的強(qiáng)度和它的矩形橫斷面的寬成正比,并和矩形橫斷面的高的平方成正比,要將直徑為d的圓木鋸成強(qiáng)度最大的橫梁,則橫斷面的高和寬分別為( 。
A.$\sqrt{3}$d,$\frac{{\sqrt{3}}}{3}$dB.$\frac{{\sqrt{3}}}{3}$d,$\frac{{\sqrt{6}}}{3}$dC.$\frac{{\sqrt{6}}}{3}$d,$\frac{{\sqrt{3}}}{3}$dD.$\frac{{\sqrt{6}}}{3}$d,$\sqrt{3}$d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)全集U={1,2,3,4,5},M={2,3,4},N={4,5},則∁UM)∪N=(  )
A.{1}B.[1,5}C.{4,5}D.{1,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若函數(shù)g(x)為R上的奇函數(shù),那么g(a)+g(-a)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.假設(shè)關(guān)于某設(shè)備使用年限x(年)和支出的維修費(fèi)用y(萬元)有如表統(tǒng)計(jì)資料:
x23456
y2.23.85.56.57.0
若由資料知,y對x 呈線性相關(guān).
(1)畫出數(shù)據(jù)對應(yīng)的散點(diǎn)圖;
(2)求支出的維修費(fèi)用y與使用年限x的線性回歸方程;
(3)估計(jì)使用年限為10 年時,維修費(fèi)用是多少?
公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$;$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知三角形△ABC中,角A,B,C所對邊分別為a,b,c,且2acosC=2b-c.
(1)求角A的大小;
(2)若b+c=2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在含有M件次品的N件產(chǎn)品中,任取n件,其中恰有X件次品,則X的最大值是( 。
A.MB.nC.min{M,n}D.max{M,n}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)y=$\sqrt{{x}^{2}-2x-3}$+ln(x+1)的定義域?yàn)椋ā 。?table class="qanwser">A.(-∞,-1)∪(3,+∞)B.(-∞,-1]∪[3,+∞)C.(-2,-1]D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}的前n項(xiàng)和Sn=4n2+2(n∈N*),求an

查看答案和解析>>

同步練習(xí)冊答案